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ABSTRACT OF THE DISSERTATION 
 

Enhancing Architecture-Implementation Conformance with Change Management and Support 
for Behavioral Mapping 

 
By 

 
Yongjie Zheng 

 
Doctor of Philosophy in Information and Computer Science 

 
 University of California, Irvine, 2012 

 
Professor Richard N. Taylor, Chair 

 
 
 

      Software architecture plays an increasingly important role in complex software development. 

Its further application, however, is challenged by the fact that software architecture, over time, is 

often found not conformant to its implementation. This is usually caused by frequent 

development changes made to both artifacts. Against this background, how to automatically 

maintain architecture-implementation conformance becomes a significant research question. 

Without this issue resolved, architecture centrality can only exist in ideal situations where 

developers are highly disciplined or the system under development is relatively simple. 

Architecture-implementation mapping is a process that specifically addresses the conformance 

issue mentioned above. Existing approaches can be roughly classified as one-way mapping and 

two-way mapping depending on which artifacts can be manually changed. None of them, 

however, provides a complete solution in the sense that mapping of changes is weakly supported 

and most approaches can support structural conformance only. In this research study, a new 

mapping approach called 1.x-way mapping is developed. Its name comes from the fact that it 

only allows manual changes to be initiated from the architecture (“1”) and a separated portion of 
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the code (“.x”). 1.x-way mapping advances the area of architecture-implementation mapping 

with the capability of preventing mistaken changes of architecture-prescribed code by 

programmers, and supporting automatic mapping of structural and behavioral architecture 

changes to code. 

1.x-way mapping consists of four core mechanisms: a deep separation mechanism, an 

architecture change model, architecture-based code regeneration, and architecture change 

notifications. In a nutshell, the architecture-prescribed code and user-defined code of each 

architecture component are separated into two independent elements. Architecture-prescribed 

code can only be updated through code regeneration, and programmers’ manual changes are 

limited to user-defined code. All the architecture changes are explicitly recorded and classified in 

an architecture change model. They are automatically mapped to code through the regeneration 

of architecture-prescribed code and the delivery of change notifications to user-defined code if 

necessary. Behavioral architecture-implementation mapping is enabled during this process with 

system dynamics modeled in a form that can be automatically translated into architecture-

prescribed code that cannot be contaminated when programmers work on user-defined code. 

Empirical evaluation of the 1.x-way mapping approach consists of three case studies based on 

ArchStudio 4, an Eclipse-based architecture development environment where 1.x-way mapping 

is implemented and integrated. In the first case study, we refactored the code of ArchStudio with 

the deep separation mechanism. In the next two case studies, we re-did, or replayed, changes 

made to the architecture and code of ArchStudio in two research projects with the help of our 

new mapping approach. The first project built and integrated an architecture-centric traceability 

tool in ArchStudio, and the involved changes were structure-oriented only. The second project 

was the development of the 1.x-way mapping tool, where both structural and behavioral changes 
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were made to the ArchStudio architecture and code.  The purpose of the evaluation is to 

determine if the 1.x-way mapping approach is applicable to real software development and its 

features are effective. 
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1 Introduction 

This chapter highlights the importance and challenges of maintaining architecture-

implementation conformance in the development of complex software systems. Based on the 

desire to address these challenges, a new architecture-implementation mapping approach is 

presented as the contribution of this research study. The research hypothesis and corresponding 

validation methods are also specified. The organization of the dissertation is given at the end of 

the chapter as further guidance to the reader. 

1.1 Research Question 

The increasing complexity of software systems makes continuously improving software 

productivity and quality difficult as long as it remains based on traditional code-centric 

development [16]. Meanwhile, software architecture—the set of principal design decisions made 

about a software system [143]–plays an increasingly important role in software development. To 

the extent this increase is present, it is due to the increased maturity of related technologies, such 

as architecture description languages [36, 47, 85, 87], architecture styles [19, 49, 142], and 

domain-specific/product line software architectures [111, 146]. Architecture-centric development 

represents the next logical step [11, 100, 141, 154]. Different from traditional software 

engineering where software architecture is simply seen as a documentation artifact that is 

peripheral to code development, architecture-centric development emphasizes that software 

architecture should play an essential role throughout the product lifecycle. It represents a 

paradigm where software architecture is used not only horizontally—to describe [54] and 

analyze [71]—but also vertically to synthesize [18], integrate [40], and evolve [114] software 

systems. 
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Several different forms of architecture-centric development have emerged in recent years, 

including model-driven development [52] and architecture-based research [58, 113]. On the one 

hand, these approaches further reveal the benefits of architecture centrality in software 

development. On the other hand, none of them dominates “the practice.” A primary reason is that 

the architecture of a software system, over time, is often found not conformant to its 

implementation [129]. In other words, a solution to a central piece of architecture-centric 

development, architecture-implementation mapping [3, 42, 103, 123], is still missing. 

Architecture-implementation mapping is a process of converting architecture specifications to 

and from source code with the goal of maintaining their conformance with respect to certain 

criteria. There are a number of architecture-implementation mapping approaches, such as 

architecture frameworks [88] and code generation [69], but most of them are deficient in the 

sense that change mapping and behavioral conformance are not supported. As a result, software 

developers often have to manually maintain architecture-implementation conformance, which is 

not only time consuming, but also error prone. Generally speaking, software architecture can 

easily become out of date if the cost of maintaining its conformance to code significantly 

exceeds that of working on code directly. 

The research question that this study addresses is how to automatically maintain the 

conformance between software architecture and source code during software development. By 

automatically, it is meant that both the architect and programmers can solely focus on their own 

artifacts without worrying about the inconsistency that their development work may cause. Note 

that programmers’ manual work on the code (e.g. to implement a new architecture element) is 

still acceptable, given that automatic programming [10, 48] is not a practical approach yet at this 

point. Conformance in the above statement means that not only the source code does not lose 
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properties of the architecture, but also that no new properties about the architecture can be 

inferred from the code. In other words, we require the source code to be a faithful interpretation 

[98] of the architecture. Depending on what information the architecture may contain, the 

specific criteria of conformance could be communication integrity [3], relative substitutability 

[56], and so on. 

Automatic maintenance of architecture-implementation conformance directly determines 

the degree to which software architecture can be used in development to improve software 

productivity and quality. In particular, a complete resolution to this research question is not yet 

available at this point. We believe it is primarily due to the following significant challenges that 

this process involves: 

• Software architecture and source code are located at separated abstraction levels and 

are usually expressed using different conceptual constructs [124]. Many architecture 

constructs, such as architecture components and connectors, often do not have direct 

counterparts in the programming paradigm. What this means in the context of 

architecture-implementation mapping is that the mapping of code back to architecture 

is essentially an activity of abstraction, which is hard to be fully automated (i.e. 

machine-based abstraction). 

• Both software architecture and source code may be under frequent changes during 

software development [117]. Many of these changes endanger the conformance 

established between the architecture and code. In particular, no explicit change 

management mechanism is provided to either regulate or analyze changes that are 

made to the two types of artifacts. As a result, not only how to map changes between 

software architecture and code forms a challenge, but also whether or not to do so 
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becomes a problem. This is especially the case considering that some changes, such 

as modifications of implementation details, may or may not affect architecture-

implementation conformance. 

• Software architecture encompasses many aspects of the system under development, 

including structure, behavior, and non-functional properties. In contrast, most existing 

architecture-implementation mapping approaches are structure-oriented only. This is 

mainly because architecture behavioral specification (e.g. UML’s sequence diagrams) 

is not complete enough to generate code from, and its corresponding code is 

inevitably mixed with user-defined dynamic details [140]. Protection of architecture-

prescribed code becomes extremely difficult in this situation. With respect to non-

functional properties, they are not considered in this study as architectural modeling 

of these properties is not fully supported by the existing technology [26]. 

Overall, a successful solution of maintaining architecture-implementation conformance 

must be able to convert architecture to and from source code when development changes occur 

to either of them. It must do so in an intelligent way, meaning taking different actions for 

different types of changes. In particular, the conversion process should be able to span across the 

abstraction gap between the two artifacts [109]. In most cases, this requires the involvement of 

code generation both structurally and behaviorally. 

1.2 Contribution 

In this research study, we present a new architecture-implementation mapping approach 

called 1.x-way mapping. Different from existing mapping approaches, which are classified as 

one-way mapping and two-way mapping depending on which artifacts can be manually changed, 

1.x-way mapping only allows changes to be initiated in the architecture (“1”) and a separated 
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portion of the code (“.x”). Architecture-prescribed code is updated solely through code 

generation. Overall, 1.x-way mapping consists of the following four core mechanisms: 

• Deep separation. 1.x-way mapping separates architecture-prescribed code and user-

defined code of each architecture component into two independent language elements 

(e.g. classes), and relies on an explicit program composition mechanism (e.g. method 

calls) to integrate the code. This is different from existing code separation 

approaches, such as filling-in-the-blanks and subclassing, where separated code is 

implicitly coupled and integrated by some built-in language relationship (same class, 

inheritance, etc.). Deep separation has several advantages, including comprehensive 

code protection, enforcement of architecture centrality, and mutual independence of 

separated code.  

• An architecture change model. 1.x-way mapping explicitly maintains an architecture 

change model that records all the development changes made to the architecture. The 

architecture change model provides information that is necessary for the mapping of 

architecture to code, such as the element that is changed, the type of changes, and 

whether or not these change have been mapped to code. 

• Architecture-based code regeneration. 1.x-way mapping updates architecture-

prescribed code through code regeneration. It only regenerates code for modified 

components. For each modified component, complete regeneration is enforced. This 

special design not only protects the integrity of component implementation, but also 

reduces the amount of code regeneration. 

• Architecture change notification. An architecture change notification contains 

information describing what element is changed in the architecture. It is sent to user-
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defined code when certain architecture changes occur. In this way, programmers can 

make corresponding changes to their code and still keep the conformance between the 

architecture and source code. 

Specifically, 1.x-way mapping works as follows. Architecture-prescribed code and user-

defined details of each architecture component are decoupled into two independent program 

elements (e.g. classes). Manual code changes are limited to user-defined code, and thus, cannot 

contaminate the architecture-prescribed code. All the architecture changes are recorded and 

classified into the architecture change model. Most of these changes can be automatically 

mapped to code through the architecture-based code regeneration mechanism. For architecture 

changes that may require modifications to user-defined code, architecture change notifications 

are also generated and sent across the separation boundary to user-defined code, describing what 

element is changed in the architecture. In particular, 1.x-way mapping can support the behavioral 

architecture-implementation mapping with system dynamics modeled in a form that can be 

automatically translated into code in a way that maintains code separation. 

1.3 Hypothesis 

The hypothesis of this study is that 1.x-way mapping can be applied in the development 

of a realistic system to prevent the architecture-prescribed code from being accidentally or 

intentionally changed by programmers, and support automatic mapping of structural and 

behavioral architecture changes to code. 1.x-way mapping and particularly its code separation 

mechanism should be applicable to the implementation of a real program of significant 

complexity. 1.x-way mapping must also be able to automatically map specific kinds of 

architecture changes to code in specific ways. Note that the manual changes to user-defined code 

for logic completion are not considered as a violation of the hypothesis. Instead, we still consider 



www.manaraa.com

7 
 

1.x-way mapping as being able to support automatic change mapping as long as it can 

automatically update corresponding architecture-prescribed code and send change notifications 

to user-defined code when necessary. Significantly, all the above features are applicable to both 

structural and behavioral architecture specifications. In the current implementation of 1.x-way 

mapping, behavioral architecture is modeled in the form of UML-like sequence diagrams and 

state diagrams. Support for other forms of behavioral specifications are pending on the 

development of corresponding modeling and code generation technologies. This is specifically 

discussed in Chapter 4. Finally, limitations apply of course: non-functional properties are not 

considered in this study. 

To validate the hypothesis, we perform case studies with a pre-existing software system, 

ArchStudio 4 [39], a Eclipse-based architecture development environment that is being used at 

UC Irvine, in several companies, and at several universities. A primary benefit of exercising 1.x-

way mapping with ArchStudio 4 is that it has been extended in several independent research 

projects, where significant changes were made to its architecture and code. Therefore, we can 

replay, or re-do some of these changes with the help of our 1.x-way mapping approach. The 

purpose is to determine if 1.x-way mapping (a) can be applied to a real software system to 

protect its architecture-prescribed code during the development, (b) automatically map 

architecture changes to the code, and (c) provide support for both structural and behavioral 

architecture specifications. Applicability and effectiveness are the two dimensions that we will 

be specifically focused on during the evaluation. 
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1.4 Organization of the Dissertation 

Chapter 1 describes the research question, contribution, and hypothesis of this study. It 

presents the significance and challenges of maintaining the conformance between software 

architecture and code during the development. 

Chapter 2 provides a classification of existing architecture-implementation mapping 

approaches. It specifically reviews some representative approaches, with their limitations 

highlighted. This forms an important motivation of this research study.  

Chapter 3 introduces related technologies of 1.x-way mapping, including architecture-

centric software development, architecture modeling, code generation, and software change 

management. These technologies together form the application context of 1.x-way mapping, and 

many of their pragmatic techniques are reused in the development of 1.x-way mapping. For 

example, a template-based code generation mechanism is applied in 1.x-way mapping to build its 

code generator. Thus, it is necessary to give an introduction to these approaches before we 

elaborate the 1.x-way mapping approach. 

Chapter 4 is devoted to the specifics of 1.x-way mapping. It starts from design principles 

and an overview of the approach, and focuses on the four core mechanisms of 1.x-way mapping: 

a code separation mechanism, an architecture change model, architecture-based code 

regeneration, and architecture change notification. Support for the behavioral architecture 

specifications is also discussed from the perspective of behavioral modeling and applying code 

separation to the behavioral code. At the end of the chapter, a comparison of 1.x-way mapping 

and the existing mapping approaches introduced in Chapter 2 is provided. This highlights the 

new features of 1.x-way mapping. 
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Chapter 5 focuses on the implementation of 1.x-way mapping. It introduces the 

implementation environment, specific tasks, tool usage, and lessons learned from the 

implementation experience. A number of issues are specifically discussed in this chapter, such as 

how to deal with removed elements during architecture change recording, the analysis and 

refinement of architecture changes, and the correlation between the behavioral architecture 

elements and structural elements during code generation. 

Chapter 6 is about the validation of 1.x-way mapping. The validation work is deeply 

rooted in the hypothesis of this study. It consists of three case studies, which are meant to 

evaluate different aspects of 1.x-way mapping. For each of these case studies, the evaluation 

method, collected results, threats to validity, and conclusion are presented. At the end of chapter, 

it is discussed why we believe the results collected from our evaluation can be generalized to the 

development of other real software systems. 

Chapter 7 offers conclusion to this study. It also points out some directions for the future 

research activities on this topic. Such work is necessary to make 1.x-way mapping more 

complete and effective in terms of maintaining architecture-implementation conformance. In the 

long term, these activities have the potential to make architecture-centric development an 

approach that can be widely adopted in the development of complex software systems. 
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2 Architecture-Implementation Mapping 

Architecture-implementation mapping is a process of converting architecture 

specifications to and from source code with the goal of maintaining their conformance with 

respective to certain criteria. A number of approaches have been developed to automate this 

process. This chapter provides a classification of existing architecture-implementation mapping 

approaches, and specifically reviews some representative approaches of each category. At the 

end of the chapter, limitations of existing approaches are summarized to highlight the motivation 

of this research study. 

Current architecture-implementation mapping approaches either rely on after-the-fact 

consistency checking to detect any inconsistency (correct-by-detection), or apply technologies 

like code generation to avoid inconsistency from the very beginning (correct-by-construction). 

Another perspective with which to look at existing approaches is assessing which artifacts can be 

manually changed during software development. From this perspective, there are approaches of 

one-way mapping and two-way mapping. Table 2-1 presents a classification of these approaches. 

The italicized words represent instances of each approach. 1.x-way mapping is also shown in the 

table as a preview, although detailed descriptions about it are given in Chapter 4.  

Note that correct-by-detection approaches usually detect the architecture-implementation 

inconsistency by extracting or inducing the architecture from the code, and comparing the 

obtained architecture with the prescriptive architecture. They assume the relative constancy of 

software architecture, since source code is the only focus during inconsistency checking. This 

explains why there is no two-way mapping of correct-by-detection in the table. 
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 Correct-by-construction Correct-by-detection 

One-way mapping 

1) Full code generation 

Domain-specific MDD [79], 

DSSA [111] 

2) Architecture refinement 

SADL [98] 

1) Reverse engineering 

Reflexion model [103] 

2) Runtime monitoring 

DiscoTect [153], ArchSync [42],  

Pattern-Lint [123] 

Two-way mapping 

1) Code generation and separation 

EMF [135], DiaSpec [20] 

2) Architecture frameworks 

myx.fw [34], UniCon [128] 

3) Unifying descriptions 

ArchJava [3], Archface [148] 

4) Roundtrip engineering 

Fujaba [107] 

 

 1.x-way mapping 
  

 
Table 2-1: Architecture-implementation mapping. 

 

2.1 One-Way Mapping 

One-way architecture-implementation mapping mandates that all manual changes begin 

from either the architecture or the code (but not both), with the other artifact automatically 

updated by a mapping approach. In the category of correct-by-construction, the architecture can 

be manually changed and the mapping is from the architecture to code. The technologies of full 

code generation and architecture refinement are mostly used for the mapping purpose. In 

contrast, the mapping is usually from the code to architecture in correct-by-detection and the 

architecture is assumed to be constant. Reverse engineering and runtime monitoring are two 

typical technologies that support this reverse mapping process. 
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2.1.1 Full	
  Code	
  Generation	
  

Full code generation is a representative approach of correct-by-construction. It is 

extensively used in some Model-Driven Development (MDD) approaches, which aim to make 

architecture models compilable and executable, and become the main artifacts of development. 

In essence, what full code generation is trying to do is promote software development to the level 

of software architecture, so that source code editing can be completely avoided. This faces the 

challenge of bridging the abstraction gap. On the one hand, software models in MDD must have 

sufficient detail to enable complete program generation; on the other hand, the models also need 

to be, and stay, simpler than the corresponding software programs created during this process. As 

a result of this challenge, full code generation is currently only applicable in some highly 

specialized domains with the help of domain-specific modeling languages [79], code generators 

[25], and software architecture [64, 111]. 

Domain-specific MDD. Domain specificity relates to the applicability of an approach to 

different domains. It classifies MDD into generic and domain-specific approaches. Generic 

MDD approaches such as Model Driven Architecture (MDA) [81] use a domain-independent 

vocabulary and mechanism that are extensible enough to be adapted to different application 

areas. This is specifically introduced in Section 3.3. In contrast, domain-specific MDD is closely 

related with the process of domain engineering, whose purpose is to develop domain artifacts 

that may be used (and reused) in developing applications for a given domain. Examples of 

reusable domain artifacts in domain-specific MDD include domain-specific languages (DSLs) 

[137] and application generators [25]. 

A DSL adopts representation formalisms and modeling constructs of established 

engineering disciplines – there is no need to learn yet another modeling language. It offers highly 
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efficient constructs to capture design requirements and constraints. Compared with a general 

modeling language, DSL is more expressive and therefore tackles complexity better, making 

software development easier and more convenient. Most importantly, DSLs raise the level of 

abstraction and together with domain-specific generators, can automate the creation of high-

quality code. The primary difficulty with DSLs, however, is that each language needs its own set 

of tools. These tools will need to evolve as the domain evolves. Building and evolving these 

tools using manual techniques can be expensive. 

Application generators are tools for creating application programs from the specifications 

that capture domain variations [24]. In particular, application generators are usually used for the 

development of a whole application family, not just a single application. Examples include Bison 

[60] and LEX [43] that have been widely used in the program compiler area. The working 

process of an application generator is as follows. The system analyst and system designer build 

specific applications, while the domain analyst and the domain designer build the application 

generators used by the system designers. The domain analyst specifies the requirements of an 

application generator for a range of problems. The domain designer takes these specifications 

and implements them in a generator. Similarly, the system designer takes the system 

specification from the system analyst and uses the produced application generator to finally 

generate applications for customers. To change or modify the product, the system analyst simply 

changes the system specification and asks the system designer to regenerate the software. In 

particular, generated programs do not have to be directly modified. 

Domain-specific MDD has been successfully applied to databases, user interfaces and 

program compliers. However, there are two important factors that limit domain-specific MDD 

from being widely used in many application areas. First, the use of application generators has a 
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very high requirement on the maturity of an application domain. They are only applicable in 

those limited situations where the domain is so thoroughly understood and bounded that 

generation is feasible. In addition, application generators and DSLs are difficult to build. They 

require expert knowledge and skill in both the application domain and building parsers and 

language translators. In general, the development costs of application generators can be 

considerably more than the development of an individual application, and must be compared 

with the long-term benefits of reuse. 

DSSA. Domain-specific software architecture (DSSA) promotes the reuse of domain 

knowledge to a high level of abstraction, and provides a new composition mechanism since 

software component assembly requires much higher levels of adaptation than the assembly of 

physical components. A DSSA comprises (1) a reference architecture, which describes a general 

computational framework for a significant domain of applications; (2) a component library, 

which contains reusable chunks of domain expertise; (3) an application configuration method for 

selecting and configuring components within the architecture to meet particular application 

requirements [143]. As far as the mapping of architecture to implementation is concerned, DSSA 

is favorable in the following three aspects. 

First, the reference architecture in DSSA serves as a foundation based on which a specific 

architecture could be created through architecture specialization. In other words, the reference 

architecture raises the level of software reuse to architectural abstractions, and thus, software 

production is increased. 

Second, the library of reusable components in DSSA simplifies architecture 

implementation to the process of component composition [30]. Significantly, the use of reference 
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architecture reduces component mismatch [55] and simplifies the management of supplier 

relationships by describing the contexts in which components operate.  

Finally, the associated configuration method of DSSA provides potentials for the 

generative software development, which automatically generates a software system from its 

requirements specification through the assembly of reusable components. One possible way to 

select and configure components based on requirements is suggested as follows [77]: the 

functional requirements are mainly used to identify required components, while non-functional 

requirements are used to partition components, to select components from alternative ones with 

the same function, or to select types of connectors between components. 

A representative example of applying DSSA techniques in software development practice 

is the use of the Koala model and architecture description language to create a family of 

television products in Philips [111]. In essence, Koala is a combination of component models 

and architecture description languages to deal with product populations. The Koala component 

model emphasizes context independence through the separation of communication from 

computation in component development. By this means, different combinations of reusable 

components can be made for different products. The Koala language extends the Darwin ADL 

[86] to support the addition of modules between components and a diversity interface 

mechanism. In particular, the reusable components are parameterized over all configuration-

specific information. 

It is important to note that the process of developing DSSA could be much more 

expensive than developing an individual system, and often needs a close cooperation between 

domain experts and experienced application engineers. It is for this reason that the creation of a 

DSSA for a domain should be carefully considered based on the evaluation of the expected 
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savings against its building cost. In general, DSSA is mostly used in the development of product-

line, or family of applications. 

2.1.2 Architecture	
  Refinement	
  

Architecture refinement is the process of mapping an abstract architecture into a lower 

level architecture that is intended to implement it. It is usually used in the construction of an 

architecture hierarchy that describes a large software system. In general, an abstract architecture 

is smaller and easier to understand; a concrete architecture reflects more implementation 

concerns [12, 90]. 

A traditional approach to mapping architectures at different levels in a design hierarchy is 

taken by Rapide [85] through the use of architecture simulation and event pattern mapping. Each 

architecture instance is associated with an event-based execution model, and the simulation of 

architecture generates a partially ordered set of events (posets). The predefined event pattern 

mappings then map posets of events in one architecture into posets in another, based on which 

the consistency of the two architectures is checked. There are two important limitations about the 

Rapide approach. First of all, event pattern mappings are defined at the level of architecture 

instances. This prevents them from being reused by other systems (architecture instances). 

Second, the consistency check in Rapide only emphasizes functional conformance. However, 

there may be properties other than behavior equivalence that need to be preserved in the concrete 

architecture. 

Style-based architecture refinement [56] takes a step further along the above-mentioned 

two aspects, and transforms an abstract architecture into a concrete architecture through a series 

of small refinements, each of which involves the application of a set of transformation rules. In 

particular, the rules are defined between architecture styles, a named collection of architectural 
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design decisions that includes a set of constraints put on development to elicit beneficial 

properties. It permits creation and verification of rules to be done by style specialists, while 

allowing system designers to simply reuse the result without proof. Another important property 

of style-based refinement is that it enforces a stronger correctness criterion than functional 

conformance in the refinement process. In essence, this is necessary because software 

architecture, as a set of principal design decisions, characterizes multiple aspects of a system, 

including functional, structural, interaction, and non-functional concerns. 

In general, techniques that apply at the level of styles are much more powerful than 

techniques that apply to instances. This is because the demonstration can be performed once for 

the styles and then reused many times for instances of those styles. The flip side of the coin is 

that sometimes it is difficult to build or prove something that works for every instance of a style. 

David Garlan addresses this problem in their style-based refinement approach by identifying 

subsets of the systems in a given style, so called substyles, and defining specialized refinements 

for each substyle, instead of the whole style. This is argued as being more close to what 

engineers actually do when they implement architectural designs. The primary challenge, 

however, is that how to identify a suitable substyles for the refinement definition. 

A special requirement on architecture refinement is that the process must be correctness-

preserving with respect to some criterion. Simply speaking, if the original architecture has some 

property of concern, the refinement must exactly preserve the property in the derived 

architecture. A criterion that is mostly seen during architecture refinement is communication 

integrity. That is, concrete architecture components only communicate with the components they 

are connected to in the abstract architecture. This criterion essentially emphasizes the 

preservation of structural architecture decisions in the refinement process. Another more flexible 



www.manaraa.com

18 
 

criterion used in a style-based refinement approach is relative substitutability, which means the 

concrete architecture must be conformable to the abstract architecture with respect to a set of 

properties of interest. These properties could be performance, security, or any other system 

concern. Strong or weak, the proof of refinement correctness is never an easy thing to do given 

that manual formal reasoning is heavily involved. This is an important reason that most style-

based refinement approaches assume the existence of pre-proved refinement patterns, and 

emphasize the definition of refinement at the reusable style level. 

The architecture refinement approach has been successfully used to design an 

architecture for an operational power control system implemented in 200,000 lines of 

FORTRAN 77 code [98]. The resulting system has a reference architecture at two levels of 

detail: the abstract architecture was in a dataflow style, and the concrete architecture was a 

combination of a call-return style, a shared memory style, and a special process synchronization 

style. Significantly, the concrete architecture is correct with respect to the abstract architecture. 

2.1.3 Reverse	
  Engineering	
  

Reverse engineering is the process of creating higher-level abstractions from source code 

that are less implementation-dependent [22]. It analyzes a subject system to identify the system’s 

components and their interrelationships, and create representations of the system in another form 

or at a higher level of abstraction. In general, reverse engineering does not involve changing the 

subject system. It is a process of examination not change or replication. Figure 2-1 clearly shows 

how reverse engineering is related with other software development activities, such as forward 

engineering, reengineering, and restructuring (i.e. refactoring). 
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Figure 2-1: Reverse engineering diagram excerpted from [22]. 
 

When applied to maintain architecture-implementation conformance, reverse engineering 

is reduced to the activity of design recovery shown in the figure and represents an after-the-fact 

detection technique. It abstracts source models from modified implementations, and compares 

the original source model with the generated one either to recover lost information or detect side 

effects [15]. This usually happens during software maintenance, when the system’s maintainers, 

not its designers, must expend many resources to examine and learn the system. In this context, 

reverse engineering can help them understand the system and make appropriate changes. Note 

that reverse engineering can be expensive for complex systems; moreover, it is hard to guarantee 
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that the generated model captures the same aspects that the original source model contains, since 

they may represent two different abstractions of the same implementation. 

Reflexion model. A typical example of maintaining architecture-implementation 

conformance through reverse engineering is the software reflexion model technique [103]. It is 

used to produce a high-level structure model qualified for system reasoning. Specifically, an 

engineer defines a high-level model of interest, extracts a source model (such as a call graph) 

from the source code, and defines a mapping between the two models. A software reflexion 

model is then computed to determine where the engineer’s high-level model does or does not 

agree with the source model. In essence, a reflexion model summarizes a source model of a 

software system from the viewpoint of a particular high-level model.  

The reflexion model technique is particularly useful for software engineering tasks like 

software comprehension, and matching designs with implementations. Its primary limitation is 

that only structure information is used in the process of model comparison. In reality, the design 

and implementation could diverge from each other along many other aspects, including 

functional behaviors and non-functional properties. Moreover, the process of model comparison 

is most often done by human interpretations of the software reflexion model. This prevents it 

from being widely used in the development of complex software systems. 

Another example of combining reverse engineering and after-the-fact consistency 

checking concerns the architecture of the Linux kernel as presented in [15]. It is akin to the 

reflexion model in many ways: both need a high level conceptual architecture as a general guide; 

both use existing source code extraction tools to extract used/defined relationships between 

functions, variables, and source files; and both have to depend on human interpretation for the 

comparison of the low-level concrete architecture and the high-level conceptual architecture. The 
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main difference is that the Linux example uses existing documentation and knowledge of related 

systems to form the conceptual architecture, while the reflexion model assumes that such a 

conceptual architecture already exists. 

2.1.4 Runtime	
  Monitoring	
  

Runtime monitoring is another branch of correct-by-detection mapping approaches. 

Runtime monitoring approaches infer the system architecture from execution traces or system 

events that are collected at runtime. Specifically, the runtime monitoring process consists of 

three specific steps: (1) observing a system’s runtime behavior; (2) interpreting that runtime 

behavior in terms of architecturally meaningful events; (3) representing the resulting 

architecture. The approaches of runtime monitoring are favorable in terms of being able to check 

the system behaviors against the original architecture. To do this, the availability of executable 

software is usually required. Some approaches also demand certain forms of code 

instrumentation. This prevents dynamic verification from being used at development time, when 

programs are often not complete enough to be executed. 

DiscoTect. DiscoTect [153] is a system for discovering the architectures of running 

object-oriented systems. It is particularly focused on the problem of bridging the abstraction gap 

between system observations and architecture effects, which is essentially the second step 

identified above. DiscoTect develops a language that defines the mappings between 

implementation patterns and architecture elements. Given a set of implementation conventions or 

styles and a vocabulary of architecture element types and operations (i.e. architecture styles), a 

mapping can be defined in that language to capture the way in which runtime events should be 

interpreted as operations on elements of the architecture style. In particular, the defined 

mappings can be reused across programs that are implemented in the same style. Specific 
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examples of an implementation style in DiscoTect could be naming specific classes of a system 

in a pre-defined way. Architecture style in the context of DiscoTect is basically same as what is 

defined previously, such as a pipe-filter architecture style, except that a list of operators are also 

defined for a specific architecture style. 

A primary limitation of DiscoTect is that it only works when an implementation obeys 

regular coding conventions. Completely ad hoc bodies of code are unlikely to benefit from the 

technique. In addition, DiscoTect also requires the identification of an architecture style, so that 

mappings can be created. Finally, as with other techniques based on runtime monitoring, 

DiscoTect can only analyze a system that is actually executable. 

ArchSync. ArchSync [42] is similar to the reflexion model discussed earlier in many 

ways. In particular, both systems use pre-existing high-level models as a reference during the 

extraction of source models. The difference is that the design models supported by ArchSync are 

Use-Case Maps [26], which model functional scenarios by means of causal paths that cut across 

design structures. In this way, UCMs are able to capture both structural and behavioral 

information at a high-level of abstraction. Another difference between ArchSync and reflexion 

model is that ArchSync generates action scripts that can be used to automatically update the 

source model when inconsistencies are detected, whereas only simple mappings are created 

between the extracted model and the pre-existing model in the reflexion model. However, 

automatic generation of these action scripts or synchronizing UCMs relies on a correlation 

heuristic technique that may be hard to scale to complex software systems.  

Pattern-Lint. Pattern-Lint [123] is a computer-assisted approach for confirming that the 

implementation of a system maintains its expected design models and rules. Different from 

traditional “reverse engineering” style analysis, Pattern-Lint improves compliance checking by 
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combining static analysis of data sharing and method calls with code instrumentation-based 

dynamic visualization. By this means, it is able to support checking for conformance to a variety 

of design principles, including architectural structure, implementation guidelines, and non-

functional properties like high cohesion and low coupling. In particular, many aspects of the 

checking process are automated, based on an explicit specification of conformance rules 

concerning different aspects of the system. Compared with other consistency checkers, support 

for multiple design principles and computer assistance are the two most important advantages of 

Pattern-Lint. However, Pattern-Lint is essentially an after-the-fact checking tool, so it has to 

depend on the assumption that the implementation is appropriately constructed. Moreover, its 

support for other non-functional properties, especially those not visualizable, is still an issue 

without being explicitly addressed. 

2.2 Two-Way Mapping 

Two-way mapping approaches recognize the essential roles of both architecture and code 

during software development, and allow manual changes to be initiated in both artifacts. 

Compared with one-way mapping, especially technologies like full code generation, two-way 

mapping is more practical given current modeling and code generation technologies. In 

particular, the fact that both architecture and source code may be changed is more close to the 

software development scenario. However, this also means more challenges since both the 

architecture-to-code mapping and code-to-architecture mapping are involved during this process. 

As a result, most two-way mapping approaches as described in the following sections can only 

support structural conformance between architecture and source code. Finally, as noted earlier, 

two-way mapping is only limited to approaches of correct-by-construction given the existing 

analysis techniques of correct-by-detection. 
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2.2.1 Code	
  Generation	
  and	
  Separation	
  

Code generation and separation is commonly used in practice to help maintain the 

architecture-implementation conformance. Approaches in this category automatically generate 

architecture-prescribed code, and separate the generated code from user-defined code by using 

some primitive code separation mechanisms (e.g. filling-in-blanks). These approaches are similar 

to our 1.x-way mapping approach in that all of them recognize that generated code should be 

separated from user-defined code and be protected from manual modification. However, it is 

important to highlight that there are some significant differences.  

First of all, the code separation mechanism used in 1.x-way mapping is different from 

existing separation mechanisms.  This is specifically discussed in Chapter 4. Simply speaking, 

existing code separation mechanisms are called shallow separation or spatial separation in this 

study given that their code is physically separated, but is still coupled and implicitly integrated 

by some inherent language relationship (e.g. same class, inheritance, etc.). In contrast, the code 

separation mechanism used in 1.x-way mapping is called deep separation or linguistic 

separation. Compared with shallow separation, deep separation not only provides a better 

protection of generated code, but also has some other advantages, such as support for behavioral 

code. Another difference is that most existing code generation and separation mechanisms do not 

have explicit change management mechanisms. As a result, the architecture and code become 

inconsistent soon after the first round of code generation. 

Code generation technology is presented in Chapter 3. The existing mechanisms of code 

separation are specifically discussed below in this section, including filling-in-blanks [135], 

subclassing [18], and partial classes [99]. 
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Filling-in-blanks, or protected code region, is a code separation mechanism that has been 

widely used in some Computer-Aided Software Engineering (CASE) tools [73, 122, 131]. It 

differentiates generated and non-generated code by including some human-understandable 

comments, such as “Do not delete”, “To be completed by user”, etc. The generated code is 

usually class names, method signatures, and pre-defined variables, while non-generated code is 

mostly the implementation of specific methods. The filling-in-blanks mechanism is easy to 

implement, but it fails to provide real protections to generated code. This is primarily because its 

generated and non-generated code are still physically mixed in the same program element, and 

both are under the control of programmers. In this context, it only works under the assumption 

that programmers are highly disciplined. Even so, accidental changes to generated code are still a 

possibility. 

Subclassing is another code separation mechanism that is often used for object-oriented 

programs. For each class generated, the subclassing mechanism generates two classes: a base 

class that contains generated code and a subclass that contains user’s manual modifications. In 

particular, any user-specified changes must be made to the subclass only and the user never alters 

the core base class. The inheritance relationship lets the user re-define or extend operations in 

generated code, such as adding new operations or adding new instance variables. Should the 

code require regeneration later, the tool overwrites only the core class. The user’s changes 

remain unaffected. 

Compared with filling-in-blanks, subclassing separates code into two separate elements. 

This to some extent prevents generated code from being manually modified. A primary 

limitation of subclassing, however, is that it requires the use of generated code as base classes. 

This may be a problem if the application that incorporates generated code has already developed 
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its own class hierarchy. Using a programming language (e.g. C++) that supports multiple 

inheritance partially addresses this problem, but not all languages support this. Besides, the 

inheritance itself is more about reusing code of an existing object rather than integrating code. 

Partial class is a code separation mechanism that was recently developed by Microsoft. 

Its usage is limited to those programming languages that support this feature, such as C# 2.0 and 

Visual Basic 2005. Partial class splits the definition of a class, a struct, or an interface over two 

or more source files. Each source file contains a section of the class definition, and all parts are 

combined when the application is compiled. Figure 2-2 shows an example of partial class, where 

the partial keyword indicates all the parts of a class. Using partial classes, generated and non-

generated code are separated into different source files, while still maintaining the mutual 

independence.  

Partial class currently is not broadly adopted. A primary criticism of partial class is that it 

breaks the concept of a class being a single entity with a single concern. Partial class, instead, 

introduces the concept of the part of a class being a single entity with a single concern. The fact 

that partial classes belong to the same class also incurs additional constraints to separated code. 

For example, partial classes or separated code of a class cannot contain methods that have the 

same signature. In other words, the code that can be protected by partial class is still limited by 

the way that separated code is integrated. 
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Figure 2-2: An example of partial class. 
 

EMF. Eclipse Modeling Framework (EMF) [135] is a modeling framework and code 

generation facility that exploits the facilities provided by Eclipse. It supports defining a model 

using Java interfaces, UML diagrams, or XML schemas, from one of which an Ecore model can 

be created. Ecore is a small and simplified subset of full UML, and is concerned with only one 

aspect of UML, class modeling. In essence, an EMF model is the class diagram subset of UML; 

that is, a structure model of the classes, or data, of the application. 

The EMF code generator can not only generate corresponding implementation classes for 

a model, but also a functional editor plug-in integrated into the Eclipse IDE that can be used to 

create and edit instances of the model. In addition, EMF provides a runtime framework that can 

work with generated code for the purpose of model change notification and persistence support. 

EMF-generated code is meant to be modified. EMF uses @generated markers in the Javadoc 

comments of generated interfaces, classes, methods, and fields to identify the generated parts. It 

is the presence or absence of such tags that determines whether the associated code elements 

should be updated or left alone during regeneration. 
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DiaSpec. DiaSpec [20] is a domain-specific ADL that integrates a new concept called 

interaction contract. As part of the architecture description, interaction contract describes the 

allowed interactions between components. In particular, its implementation is generated and 

encapsulated into a programming framework that is not modifiable by programmers. The 

interaction contract uses subclassing to decouple its user-defined and generated code. 

Additionally, it provides no change management, and simply relies on the Java complier to 

detect mismatches between existing code and new generated code. This is not sufficient for 

architecture changes that do not cause a compilation error. Moreover, subclassing as a shallow 

separation mechanism may also cause incompatibility between generated code and existing class 

hierarchies. 

2.2.2 Architecture	
  Frameworks	
  

An architecture framework is a piece of software that acts between a particular 

architectural style and a set of implementation technologies. It facilitates the architecture-

implementation mapping by providing fairly-well understood implementations, which assist 

developers in implementing systems that conform to the prescriptions and constraints of a 

specific architecture style. An architecture framework helps to establish the initial conformance 

between the architecture and code, but it does not support the mapping of changes, especially 

architecture changes that happen afterwards. As a result, an additional mapping approach, such 

as 1.x-way mapping, is required to manage the architecture-implementation conformance. The 

most common example of an architecture framework in industry is the standard I/O library in 

UNIX, which is actually a bridge between the pipe and filter style and procedural programming 

languages like C. Two major framework initiatives from academia are myx.fw and UniCon. Both 

are specifically introduced in the following. 



www.manaraa.com

29 
 

myx.fw. The myx.fw class framework [34] is an extensible framework of abstract classes 

for the architecture style of Myx. The Myx style is a set of rules for composing the components 

and connectors of an application like ArchStudio. It provides patterns of composition for 

synchronous and asynchronous interactions among components. It also provides rules for what 

kinds of assumptions components may make about each other, ensuring a directed/layered 

ordering of dependencies among components. The rules of the Myx style include (1) 

Components are used as the loci of computation; (2) Connectors are used as the loci of 

communication; (3) Components communicate only through well-defined provided and required 

interfaces; (4) Components and connectors have two ‘faces’, ‘top’ and ‘bottom’; (5) Components 

interact through three distinct patterns: synchronous bottom-to-top procedure call; (6) 

asynchronous top-to-bottom (notification) messaging; and asynchronous bottom-to-top (request) 

messaging; (7) Components may only make assumptions about the services provided above 

them, and may make no assumptions about the services provided below them. 

By adhering to these constraints, Myx applications (including ArchStudio) receive certain 

benefits. Components remain relatively independent from one another, and it is easy to reuse 

components. Components only communicate through explicit interfaces, so it is easy to rewire 

components in different configurations without recoding the components themselves. 

The Myx framework implements component interconnection and message passing 

protocols. Components and connectors used in Myx applications are subclasses from the 

appropriate abstract classes in the framework. This guarantees their interoperability, eliminates 

many repetitive programming tasks, such as connector implementations, and provides a basis for 

development of reusable components in Myx. 
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Specifically, Myx components and connectors are classes that implement an interface 

called IMyxBrick. Myx brick (component and connector) classes must minimally implement only 

two capabilities. First, Myx bricks must provide zero or more ‘lifecycle providers.’ A lifecycle 

provider is a class (possibly the brick’s main class itself) that implements four lifecycle methods: 

init(), begin(), end(), and destroy(). These methods are called automatically by the framework as 

the bricks are created, attached, detached, and destroyed respectively. Second, Myx bricks must 

provide ‘true objects’ for provided interfaces, given the identifier of the provided interface. 

Recall that Myx bricks have explicit provided and required interfaces; these interfaces are 

associated with objects that implement these interfaces. For each provided interface, a Myx brick 

must (on demand of the framework) produce the object that implements that interface. 

UniCon. UniCon [128] is an ADL for universal connector support, emphasizing the 

structural aspects of software architecture. Like other ADLs, architectures are modeled in 

UniCon as a configuration of components and connectors. Components are the locus of 

computation and state. Each component in UniCon has an interface specification that defines the 

component’s type, and a list of association units – players, whose functionality is pretty much 

like that of component interfaces in other ADLs. Connectors are the locus of definition of 

relations among components. Each connector has a protocol specification that defines its 

connector type, a list of association units – roles, and the properties of roles. The connection 

process is then mainly about mapping the players of components with roles of connectors. 

The novel part of UniCon is that the implementations of connectors in UniCon are all 

built-in, and could be reused in implementing different architectures. By this means, system 

developers could focus on the application-specific components, while the management of 

connectors is under control. The supported connector types include procedure call, data access, 
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Unix-like pipes, remote procedure call, and real-time scheduling. Further specification or 

customization of each connector is achieved by providing values for certain attributes of a 

connector type, such as the communication algorithm used, and the maximal connection number 

allowed. The primary limitation of the UniCon implementation, however, is that built-in 

connector types are not extensible. This makes it hard for application designers who need a 

special connector type that is not supported. In addition, connector types in UniCon are chosen 

opportunistically and organized loosely. A better approach to do this could be through the use of 

a connector classification framework [91], where from general to specific connectors are 

organized into categories, types, dimensions, sub-dimensions, and values, based on the provided 

services and realization mechanisms. 

2.2.3 Unified	
  Representations	
  

Approaches of unified representations seek to express and enforce structural or 

behavioral aspects of software architecture within source code, typically through the adoption of 

specially designed programming languages. They embed architecture constructs in a 

programming language, and rely on program compliers to check for architecture-code 

conformance. Examples include ArchJava and Archface, both of which develop new program 

elements to represent architecture constructs in source code. Their benefits are obvious: the co-

evolution of software architecture and implementation. However, this also makes it hard to 

modify, extend, and reuse architecture and code independently given that they are mixed into a 

single artifact. In addition, approaches of unified representation face a common applicability 

issue: no other ADLs or programming languages can be supported. 

ArchJava. ArchJava [3] is an extension to Java that unifies software architecture with 

implementation in one language. To allow programmers to describe software architecture, 
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ArchJava adds to Java new language constructs to support components, connections, and ports. 

Figure 2-3 is excerpted from [3], and shows an example of ArchJava code that represents a 

graphical compiler architecture and its parser component. The component, port, and connect key 

words in the figure are defined by ArchJava to represent corresponding architecture elements. In 

addition, ArchJava enforces some specific rules to protect architecture-implementation 

conformance. For example, it requires that a component can only communicate with other 

components through explicitly declared ports – regular method calls between components are not 

allowed. This makes dependencies explicit, reducing coupling between components. Another 

rule specifies that each required method must be bound to a unique provided method. All these 

rules are enforced and checked by the ArchJava compilers. 

 

Figure 2-3: An ArchJava example excerpted from [3]. 
 

A primary advantage of ArchJava is that it protects communication integrity of the 

system under development. Namely, the implementation components only communicate directly 

with the components they are connected to in the architecture. This is based on the ArchJava 

programming rules described above, and essentially guarantees the structural conformance 
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between software architecture and code. However, ArchJava cannot support behavioral 

conformance. In addition, the way that the architecture is implemented is limited to those 

predefined in the language. For example, inter-component connections can only be implemented 

with method calls in ArchJava. 

Archface. Archface [148] is similar to ArchJava in terms of using architecture 

description as part of the implementation. It develops a new interface mechanism that plays a 

role as ADL at the design phase and as a programming interface at the implementation phase. 

Archface exploits technologies of Aspect-Oriented Programming (AOP), such as pointcut and 

advice, to specify the collaboration among components. This makes its implementation limited to 

aspect-oriented programs. In addition, Archface relies on aspect weaving and round-trip 

engineering to maintain the architecture-implementation conformance. Both of these 

technologies face significant complexities as a program scales. It is not clear how this is tackled 

in Archface. 

2.2.4 Roundtrip	
  Engineering	
  

The goal of software roundtrip engineering is to propagate updates made in derived 

artifacts back to their source artifacts [6, 21, 127]. Roundtrip engineering is usually used when 

the source model does not contain all information necessary to implement the complete system 

or the mapping of models to code is not as good as current day compilers. A typical example is 

architecture-centric software development that is introduced in next chapter. The mapping of 

architecture to implementations generates architecture-prescribed code. Since software 

architecture only contains principal design decisions of a system, generated programs are usually 

application fragments and skeletons with blanks for the developers to fill with implementation 

details. However, when the user has the possibility of changing the implementations, he can 
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potentially also change parts of the architecture-prescribed code. Obviously this is a source of 

trouble, which is specifically addressed by roundtrip engineering. It is important to note that 

roundtrip engineering is not necessary for some model-driven development approaches, where 

full code generation is enforced and the source model is the only artifact that could be changed 

by application developers. 

Roundtrip engineering in practice is often implemented by reverse engineering the 

modified source code to a high-level model, and replacing the previous version of the software 

model with the generated model. During this process, the information in the original software 

model is usually not considered, and is simply replaced with the new model. Strictly speaking, 

this is inconsistent with how roundtrip engineering is defined and the controversy about it still 

exists. Additionally, as discussed in Section 2.1.3, reverse engineering involves the activity of 

abstraction and is hard to fully automate. In particular, repeatedly doing it during the 

development of complex software systems could be expensive. 

Fujaba (From UML to Java And Back Again). Fujaba [107] is a typical example of 

using reverse engineering to do roundtrip engineering. Software architecture in Fujaba is 

modeled as UML class diagrams that capture the system structure and so called Story-Diagrams 

that capture system dynamics. Story-Diagrams are a combination of UML activity diagrams and 

UML collaboration diagrams. Activity diagrams are used to specify the control flow and each 

activity contains either pure Java source code or a graph rewrite rule that is translated from a 

collaboration diagram. 

A special feature of Fujaba is that it can reconstruct (i.e. reverse engineer) both structural 

models and behavioral models from the code that was manually changed, whereas most other 

systems can only reconstruct structure models. In particular, this is done through static analysis 
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or parsing the modified code. In contrast, the construction of high-level behavioral model from 

source code is usually done through runtime monitoring discussed in Section 2.1.4. Graph 

transformation is involved during this process. In addition, Fujaba also requires that the program 

follow some pre-defined implementation patterns (e.g. naming conventions). A certain amount of 

annotations also have to be inserted and preserved in the source code. This, as well as the 

complexity of graph transformation, can be seen as a major limitation of Fujaba. 

A recently developed approach of roundtrip engineering is through the application of 

software traceability [2], which is specifically discussed in Section 3.4. At this point, it is 

sufficient to know that software traceability concerns the relationships that exist among software 

artifacts created during development of a software system. Different from reverse engineering, 

the traceability-based roundtrip engineering process updates or reconciles, instead of replacing, 

the source models during the return trip. Following the trace links established between derived 

artifacts (e.g. source code) and the source artifacts, the system either warns the user that the 

changed artifact is generated from a high level model, or suggests further changes in the source 

models when manual changes to derived code occur. Automatic update of the source model, 

however, is not supported. 

Finally, it is important to note that software traceability itself is still a research problem. 

It faces several critical challenges, such as creation, storage, and maintenance of traceability 

links during software development. This to some extent limits the further development of the 

traceability-based roundtrip engineering. In particular, the application of this approach in 

industry is rarely seen at this moment. This situation may improve as the technology of software 

traceability becomes increasingly mature.  
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2.3 Problems 

Based on the discussion provided above, we believe that none of existing architecture-

implementation mapping approaches is a complete solution that can be widely used during 

complex software development. Overall, correct-by-detection approaches require the program to 

be relatively complete or even executable in order for reverse engineering or runtime monitoring 

to be done for inconsistency detection. They are more appropriate for software maintenance, 

rather than software development. Moreover, prevention is always better than detection, 

especially considering that some inconsistencies may be expensive to detect and recover. From 

this perspective, correct-by-construction seems to be a good direction to go for conformance 

maintenance during development. 

One-way mapping of correct-by-construction, however, faces the challenges of complete 

modeling and full code generation, and in practice can only be applied in some highly 

specialized domains with the help of DSLs and some other domain specific artifacts. Two-way 

mapping approaches of correct-by-construction, in contrast, are more practical given current 

modeling and code generation technologies. The problem is, most approaches in this category, 

such as architecture frameworks and current code generation approaches, are structure-oriented 

only and are limited in the mapping of changes between architecture and source code. Below we 

summarize and specifically discuss the problems of existing (especially two-way mapping) 

approaches. Resolution of these issues forms an important motivation of this research work. 

• Mapping architecture changes to code. Maintaining architecture-implementation 

conformance is not a one-time thing since software architecture may be changed 

frequently during software development. A single round of code generation helps to 

improve software productivity, but is far from solving the conformance issue. 



www.manaraa.com

37 
 

Complete code regeneration with primitive merge support (e.g. EMF’s JMerge) is 

usually used when architecture changes occur after the first round of code generation. 

In the cases where user-defined code already exists and needs to be preserved during 

code regeneration, however, this method deteriorates quickly into a manual mapping. 

All these difficulties primarily come from the fact that current architecture 

implementation is usually done in an ad hoc way, and architecture-prescribed code is 

mixed with implementation details. Existing code separation mechanisms to some 

extent alleviate this problem. The challenge that they face is how to make separated 

code work seamlessly, especially when a portion of the code is regenerated. In 

addition, the programmers often have to figure out by themselves what was changed 

in the architecture. 

• Mapping code changes to architecture. This is essentially an abstraction activity, 

and is hard to fully automate. In particular, the code-to-architecture mapping actually 

conflicts with the principle of architecture centrality. It can be partially addressed by 

automatically generating code from the architecture and forbidding manual changes 

to generated code. With current code separation mechanisms (e.g. filling-in-blanks), 

however, this only works under the assumption that programmers are highly 

disciplined. Even so, accidental changes are still a possibility. Another promising 

approach to this problem is roundtrip engineering based on software traceability. 

However, the wide application of this technology is still pending on further 

development of software traceability. Moreover, automatic update of architecture 

when manual changes to generated code occur is still a critical challenge even with 

traceability links involved. 
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• Support for the behavioral mapping. Software architecture encompasses both 

structural and behavioral design decisions of the system under development. In 

contrast, most architecture-implementation mapping approaches are structure-

oriented only. This is usually because architecture behavioral specifications (e.g. 

UML’s sequence diagrams) are not complete enough to generate code from, and most 

existing code separation mechanisms do not support the separation of architecture-

prescribed behavioral code from implementation details. Thus, the corresponding 

behavioral code is inevitably mixed with user-defined dynamic details. Protection of 

architecture-prescribed code becomes extremely difficult in this situation. Another 

challenge is that behavioral architecture specification could involve the interactions of 

several architecture components, and the corresponding implementation often cross-

cuts the implementations of the involved components. Under this circumstance, code 

separation becomes even harder based on existing code separation mechanisms. The 

adoption of special modeling languages (e.g. Archface) may help at this point. 

However, as discussed earlier, these approaches rely on the design of special 

languages and are hard to be widely used. 
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3 Related Work 

This chapter reviews a number of software development activities that are related to the 

process of architecture-implementation mapping, including architecture modeling, code 

generation, architecture-centric development, software traceability, and software change 

management. Of these different activities, architecture modeling and code generation provide 

some pragmatic techniques that are reused in our study so that we can focus on the consistency 

control of our approach; architecture-centric development actually represents an application 

context of architecture-implementation mapping; finally, software traceability and change 

management are two areas that are related to architecture-implementation mapping, even though 

corresponding techniques are not directly applied in this study. 

3.1 Architecture Modeling 

Software architecture modeling is an important portion of architecture-implementation 

mapping. Architecture models may be expressed using different modeling languages, and may 

express different aspects of the system (e.g. structure, behavior, etc.). Significantly, different 

definitions of software architecture still exist in the current literature. All these variations have an 

impact on the process of architecture-implementation mapping, and are specifically introduced in 

the following subsections. 

3.1.1 Definition	
  of	
  Software	
  Architecture	
  

Software architecture was first defined by Perry and Wolf as a tuple of Elements, Form, 

and Rationale [120]. That is, software architecture is a set of architectural or design elements that 

have a particular form. Specifically, these elements could be processing elements, data elements, 



www.manaraa.com

40 
 

or connecting elements. The processing elements are those components that supply the 

transformation on the data elements; the data elements are those that contain the information that 

is used and transformed; the connecting elements (which at times may be either processing or 

data elements, or both) are the glue that holds the different pieces of the architecture together 

into architecture form. Finally, an underlying, but integral, part of an architecture is the rationale 

for the various choices made in defining an architecture. The rationale captures the motivation 

for the choice of architectural style, the choice of elements, and the form. 

Shaw and Garlan defined software architecture modeling as a problem of designing and 

specifying the overall system structure that is beyond the algorithms and data structures of the 

computation [54]. These structural issues include gross organization and global control structure; 

protocols for communication, synchronization, and data access; assignment of functionality to 

design elements; physical distribution; composition of design elements; scaling and performance; 

and selection among design alternatives. 

Based on these early definitions of software architecture, a number of other definitions 

were presented in the following decade. For example, a later definition that has been widely 

adopted states that software architecture of a computing system is the structure or structures of 

the system, which comprise software components, the externally visible properties (assumptions 

that other components can make of a component: provided services, shared resources, etc.) of 

those components, and the relationships among them [26]. 

All these definitions do not conflict with each other. Instead, they are similar in that they 

all emphasize the structural perspective of software architecture (the so called 4 “C” model: 

Components, Connectors, Configuration, and Constraints). This to a great extent is based on the 

modeling technologies of software architecture at that time. For example, most early architecture 
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description languages can only model the system structure. A primary benefit of these traditional 

definitions is that they are concrete and straightforward to follow. The limitation, however, is 

also significant. All these definitions of software architecture rely too much on, or are limited by, 

the development status of modeling technology at the time the definition was given. Thus, they 

may soon become out of date with the development of corresponding technologies (e.g. 

extensible architecture modeling). A typical example is Model-Driven Development, which also 

emphasizes the role of software architecture in the development, but cannot be explained by 

most traditional architecture definitions since its models usually involve extensive information 

beyond structure and do not have some well-recognized architecture constructs (e.g. connectors). 

The definition we used in this research study defines a software system’s architecture as 

the set of principal design decisions about the system [143]. We believe this is an accurate 

characterization of software architecture that is not affected by the limitations of existing 

modeling technology. Different from the traditional definitions, this definition particularly 

emphasizes the extensibility of software architecture: different principal design decisions may be 

included by different sets of stakeholders for a system. It may look abstract given current 

modeling technologies, but it offers a universal explanation for all architecture-related activities, 

including MDD mentioned above. With the further development of architecture modeling 

technologies, especially extensible modeling languages, we believe this definition will be 

gradually adopted more widely. 

Finally, it is important to note that we still follow the earlier definition of software 

architecture in our implementation of structural architecture specification. Namely, the 

architecture consists of a configuration of components and connectors. In this way, we can relate 

our technology to historic architecture models. 
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3.1.2 Architecture	
  Description	
  Languages	
  

Architecture description languages (ADLs) overcome the informality of most box-and-

line descriptions of software architecture, and provide notations and tools for precisely 

representing and analyzing architectural design decisions. Existing ADLs include Darwin [86], 

Rapide [85], Wright [4], Acme [57], AADL [47], UML [89], and xADL [32, 36]. Each of them 

provides certain distinctive capabilities, such as view support, dynamism, and analysis 

mechanism. A specific classification and comparison of these ADLs is provided in [87], and is 

not repeated here. Instead, we focus on the description of the xADL and UML languages in this 

section. Both of these languages are used in this research study with certain extensions or 

adaptations made. 

xADL is an extensible XML-based ADL. The version used in this study is xADL 2.0. 

Extensible Markup Language (XML) [151] is a markup language that defines a set of rules for 

encoding documents in a format that is both human-readable and machine-readable. A XML 

document forms a tree structure that consists of a set of nested elements, each of which is 

delimited by a start and end tag (a markup construct that begins with "<" and ends with ">"). A 

XML element may contain additional annotations called attributes. In addition, the XML schema 

language or XML Schema Definition (xsd) can be used to define the structure of an XML 

document, such as elements that can appear in a document, the order of elements, and default 

values of attributes. 

Every xADL model is a well-formed and valid XML document. By well-formed, it means 

the document conforms to the basic structure of tags and attributes defined in XML. By valid, it 

means the document is consistent with the defined schema. In particular, xADL 2.0 is defined in 

a modular language design approach. Specifically, its notations are not defined in one large 
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XML schema block. Instead, xADL 2.0 is defined as a set of XML schemas, and the xADL 2.0 

language is simply the composition of all the xADL schemas. Each xADL schema adds a set of 

features to the language, such as the ability to describe components and connectors, or the ability 

to indicate some particular elements in the architecture. Figure 3-1 is excerpted from [38] and 

shows the existing schemas of xADL 2.0. 

Figure 3-1: xADL schemas and dependencies 
 

Among current xADL schemas shown in the figure, Structure and Type, Instances, and 

Java Implementation are the ones that are directly related with this study. Structure and Type 

defines basic structural modeling of prescriptive architectures: components, connectors, 

interfaces, links, as well as types for components, connectors, and interfaces. Instances defines 

basic structural modeling of description architectures: components, connectors, interfaces, and 

links.  Java Implementation is related with architecture-implementation mapping. It defines a set 

of elements to map from structural architecture elements (i.e. components) to Java 
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implementations. New schemas are still necessary for the investigation of this research study, for 

example, to model architecture changes and interactions among components. These are 

specifically discussed in Chapter 4. 

Another significant advantage of xADL is its tool support [37]. In particular, there is a 

tool called Apigen that can automatically generate new data binding libraries (APIs for parsing, 

reading, and writing documents) for new xADL features or schemas. The data binding library 

provides an object-oriented interface to edit xADL documents. On top of it, xADL’s tool suite 

includes a wrapper called “xArchADT”, which can cast the object-oriented interface to a 

“flattened” interface that can be exposed over network-based middleware. Based on the data 

binding library and xArchADT, new tools can be built to support the exploration of those new 

features. This makes xADL an ideal language for investigating new architectural approaches and 

research directions. 

Unified Modeling Language (UML) is a standardized modeling language that is mostly 

used the field of object-oriented software engineering. The standard is managed, and was 

created, by the Object Management Group (OMG). It was first added to the list of OMG adopted 

technologies in 1997, and has since become an industry standard for modeling software-intensive 

systems. Its latest released version is UML 2.3. 

UML consists of a number of modeling diagrams, which can be roughly classified into 

two categories: structure diagrams and behavior diagrams [50]. A typical example of structure 

diagrams is the UML class diagram, which describes the structure of a system by showing the 

system's classes, their attributes, and the relationships among the classes. It is used in almost all 

object-oriented methods. A problem of class diagrams is that sometimes they contain too many 
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details, given that they are relatively close to the source code. From this perspective, class 

diagrams often cannot provide real abstractions as most ADLs do. 

Examples of behavior UML diagrams include use case diagrams, sequence diagrams, 

state diagrams, and activity diagrams. A use case is a set of scenarios (a sequence of interaction 

steps between a user and a system) tied together by a common user goal. A use case diagram, 

thus, depicts interactions between a user and a system, and represents an external view of the 

system. It is rarely used to model the inside working mechanism of a system. In contrast, a 

sequence diagram describes how groups of objects of a system collaborate in a single use case. 

Typically, a sequence diagram shows a number of involved objects and the messages that are 

passed between these objects within the use case. A state diagram describe all of the possible 

states that a particular object can enter and how the object’s state changes as a result of events 

that reach the object. This usually spans several use cases. Finally, activity diagrams include 

some special modeling notations, such as branch, merge, and form, to represent parallel 

behaviors. They are primarily used in workflow modeling and multithreaded programming. 

Current usages of UML are primarily in three modes: UmlAsSketch, UmlAsBlueprint, and 

UmlAsProgrammingLanguage [51]. In the UmlAsSketch mode, developers use the UML to help 

communicate some aspects of a system. The essence is selectivity. This mode is very popular. In 

contrast, UmlAsBlueprint is a UML mode that focuses on completeness. The goal is to express 

software designs in such a way that the designs can be handed off to a separate group to write the 

code, much as blueprints are used in building bridges. This mode is how we adopt UML and use 

it in our approach as described specifically in Section 4.5, except that the code is automatically 

generated from these UML models. The third mode raises the bar of UML even higher. It tries to 

use UML as a high level language by extending standard UML and providing executable 
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semantics for it. A typical example is executable UML defined based on action semantics. This 

is mostly advocated by some MDD approaches introduced later in Section 3.3.1, such as Model-

Driven Architecture (MDA). They try to make UML computation complete to achieve a high 

degree of formality and completeness for the platform independent model (PIM). 

3.1.3 Modeling	
  Aspects	
  

An architecture model is an artifact that captures some or all of the design decisions that 

comprise a system’s architecture in a machine-understandable ADL. It may represent different 

aspects of the system, including structure, behavior, and non-functional properties [80, 147]. 

Other modeling aspects also include domain variations used by domain-specific approaches and 

composition specifications for component-based development [67, 138]. In this research study, 

however, we only focus on the mapping of structural and behavioral architecture specifications 

to the code. 

System structure is a basic aspect that can be captured by most architecture models. As 

mentioned earlier, existing ADLs model the architecture structure as a configuration of 

components and connectors with some constraints enforced. Important elements of a structural 

architecture model include: 

• Components. Components are the loci of computation and state in the architecture. A 

component (1) encapsulates a subset of the system’s functionality and/or data, (2) 

restricts access to that subset via an explicitly defined interface, and (3) has explicitly 

defined dependencies on is required execution context. 

• Connectors. Connectors are the loci of communication in the architecture. A 

connector can be seen as a special component that is tasked with effecting and 

regulating interactions among components. From our perspective there is no 
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difference between components and connectors in terms of the mapping to source 

code. Implementing both as components is sufficient for this research study. 

• Interfaces. Interfaces are components’ portals to the outside world. There are 

provided and required interfaces. A provided interface expresses the services that a 

component provides, usually in the form of a list of functionally related operations. A 

required interface is the interface to services provided by other components in a 

system on which this component depends for its ability to perform its operations. 

• Links. Links are connections between elements that define the topology of the 

architecture. 

• Configuration. An architectural configuration is a set of specific associations between 

the components and connectors of a software system’s architecture. 

Examples of ADLs that primarily focus on the capture of architectural structure include 

Darwin, Wright, and UniCon. These languages tend to be semantically precise, but lack breadth 

and flexibility. They support similar architecture constructs, although mostly in different ways. 

For example, systems in Darwin are modeled as a set of interconnected components and there is 

no notion of explicit connectors in Darwin. However, a component that facilitates interactions 

could still be interpreted as a connector. Interfaces in Wright are simply specified using a 

notation derived from the Communication Sequential Processes (CSP) [4], which are introduced 

in next section. This gives Wright the ability to analyze constraints such as deadlock freedom.  

A primary limitation of structural architecture models is that they cannot capture 

interactions among components or dynamic behaviors of a specific component. For example, the 

structural designs only declare some operations expected or provided in the interface of the 

participating components, but do not capture the control flow of several small methods scattered 



www.manaraa.com

48 
 

around the architectural configuration. Thus, the control flow among these operations is usually 

lost when mapped to code. This causes the clarity or the underlying rationale of the designs to 

get lost in the code [94]. In general, a single method only make sense in a larger context and is 

difficult to be reused independently. 

In contrast, a behavior model of a software system captures interactions among system 

elements or between the system and its external user, the order in which they can be executed, 

and maybe other aspects of this execution such as timing and concurrency. In essence, the 

primary challenge of behavioral modeling is that a static method has to be used to describe 

dynamic aspects of the system. Existing behavioral modeling methods can be classified into 

those that are based on formal notations and those that are for practical use. Each has its own 

range of applications, and important limitations as well. Generally, formal methods are 

expensive and complicated for normal use. In most cases, people would rather write code 

directly in implementations. Practical behavior models like UML diagrams are informal and still 

semantically incomplete. It is hard to generate complete code from them without any significant 

extensions made. 

Formal behavioral modeling methods include the use of process algebra [96], Petri nets 

[101], Actor model [1], and Z notations [134]. Automatic analysis is one of their primary 

purposes [74]. Process algebras, Petri nets, and the Actor model particularly focus on modeling 

concurrent computations. Specifically, process algebra is the study of the behavior of parallel or 

distributed systems by algebraic means. “Process” refers to behavior of a system, and can be 

simply seen as a series of events, the basic units of a behavior model. Processes are then 

described by combining events and other simpler processes through a set of pre-defined 

composition operators. Significantly, the operations must satisfy a set of axioms or laws, based 
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on which advanced analysis and verification can be done. Examples of process algebras include 

Calculus of Communicating Systems (CCS) [95], Communicating Sequential Processes (CSP) 

[70], and Pi-calculus [97]. Pi-calculus is an extension to CCS, and addresses the issue of 

dynamic reconfiguration in a distributed system. One of its important extensions is treating links 

as ordinary variables (called names) that can be passed among agents. In this way, links between 

agents can be created and destroyed dynamically. A Petri nets consists of places, transitions, and 

directed arcs. By changing the meanings of these elements, Petri nets can be used to model 

control flow, data flow, and state machines of a system. Its major weakness, however, is that 

Petri net-based models often tend to become too large for analysis even for a modest-size system. 

Finally, Z is a formal notation that is based on set theory and first-order logic. The Z language 

focuses on data and its transformations. Systems are specified as sets of schemas. The Z 

schemas, which can be regarded as generalized type definitions, are used to represent basic 

constructs. These schemas provide semantics that permit the formal verification of properties of 

the model. Additional details on Z can be found in [134]. 

Behavior modeling of software architecture mostly reuses or is based upon the work 

described above. Wright and Darwin are two ADLs that use existing formal notations to model 

system behaviors. Wright uses CSP, and Darwin uses FSP (another instance of process algebra). 

With supportive tool built (e.g. LTSA), models specified in these languages can be analyzed to 

verify if the system design satisfies some predefined properties, such as deadlock freedom, 

liveness, and so on. In essence, what Wright and Darwin do is describe the system structure with 

their own ADL constructs, and use structural descriptions as a framework for behavioral 

specification. They suffer from the same limitations as those formal notations, high complexity. 

The architecture analysis and design language (AADL) is an ADL that provides a more practical 
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way to model system behaviors. It has two specially designed elements: Call Sequences and 

Modes. Call Sequences describes the interactions between or within components, and Modes 

represent operational states of a system or a component. Functionally speaking, these two 

language elements are very similar to interaction and state diagram of UML. From this 

perspective, we think AADL actually takes a simple, but practical way for behavior description. 

The risk, as described above, is how to successfully map these informal specifications into code. 

3.2 Code Generation 

Similar to structural modeling, structural code generation is well understood and not a 

particular research issue. Architecture-implementation mapping brings a new challenge in this 

regard, however, which requires both structural code and behavioral code, to be automatically 

generated from source models. This is hard not only because non-structural modeling is not yet 

mature, as introduced in previous section, but also because system dynamics are involved and 

many more variations need to be considered compared with static structural code generation. 

Figure 3-2 shows existing code generation approaches and how they treat source code 

differently. Code can be treated as a model, program, or plain text. Approaches that treat code as 

model require the definition of a metamodel [9] for the target programming language, and use 

model transformation approaches [31] for code generation. A typical example is Eclipse’s ATL 

project [45]. It remains to be seen how well these approaches can be practically used in complex 

software development, especially considering the high complexity that is often involved in 

model transformation. Approaches that treat code as program are trying to use the target 

programming language’s own metaprogramming ability, e.g. reflection, for code generation [14]. 

They are limited in the sense that they can only be used to generate structural constructs like 

classes, methods, and attributes. 
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Figure 3-2: Different code generation strategies see code differently. 
 

Treating code as plain text, or template-based code generation represents a popular 

approach [25, 69]. A typical example is Java Server Pages (JSP) that are used to create web 

pages, where the Java escapes are executed to produce the dynamic portions of the HTML page. 

A primary advantage of the template-based approach is that templates are independent of the 

target language. This simplifies the generation of any textual artifacts, including documentation. 

A primary challenge, however, is verifying the correctness of code embedded in templates that 

are usually not runnable. Thus, a comprehensive code generation approach that can work as well 

as a program compiler is still missing. Further development in this area may be pending on a new 

perspective. 

User control, the amount of work that is required from the user, is another important 

discriminator between various approaches to code generation. There are two extremes. The 

simplest implementation is one that makes the user responsible for every single generation step. 
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Such an approach is only practical if the system is of small scale and contains compact mapping 

steps. Fully automatic systems, on the other hand, hide everything in the code generation process 

from users by using built-in heuristics to evaluate different mapping possibilities. Such systems, 

however, work satisfactorily only for restricted domains of application [10]. Against this 

background, it is desirable if a code generation process is interactive. For example, users may be 

responsible for making decisions like selection of appropriate transformation rules, while the 

system automatically applies the selected rule and records users’ selections for the purpose of 

replay. At this point, how to find a balance between user and system control is an important issue 

that needs careful consideration. 

Granularity measures the size of software entities used as the construction unit in the 

code generation process. From fine to coarse, variations of granularity include programming 

language constructs, code fragments and skeletons, components, and large-scale domain-specific 

subroutines [41]. In general, increasing granularity can not only improve software reusability 

[82], but also contract the implementation space given that reusable constructs usually 

encapsulate certain implementation decisions from the external. At this point, programming 

language constructs, such as variables and arrays, provide very little support since it is essentially 

generating code from scratch. In contrast, large-scale subroutines are much more useful, 

although limited to some domain-specific approaches like application generators. A typical 

example of code fragments and skeletons in architecture-implementation mapping is an 

architecture framework, which specifies key elements of an architecture style in the form of 

source code. Finally, software components are mostly used in “component-based” software 

development, where glue code is generated from composition specifications to combine different 

large-grain components into one application. 
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3.3 Architecture-Centric Software Development 

A system’s software architecture is the set of principal design decisions made about it. 

Architecture-centric development emphasizes that software architecture, instead of being a 

documentation artifact that is peripheral to code development, should play an essential role 

throughout the software development lifecycle. Specifically, it requires that all the architecture-

related changes start right from the architecture, and be mapped to code through an architecture-

implementation mapping tool. Examples of architecture-centric development include model-

driven development (MDD) and architecture-based research. A significant difference between 

these approaches is the modeling notation used and the amount of modeling versus programming 

in software development [156]. Therefore, different strategies are often taken to maintain 

architecture-implementation conformance [126]. 

3.3.1 Model-­‐Driven	
  Development	
  

MDD suggests a paradigm where software design models take the role of traditional 

programs, and become the main artifact of development. UML and domain specific languages  

(DSLs) are the main modeling notations of MDD. Code generators are extensively used in MDD 

to generate code from design models. Based on the amount of generated code, approaches of 

MDD are divided into two camps [29, 63, 135], which we refer to as MDD in theory and MDD 

in practice. MDD in theory aims to make design models compilable and executable, so that 

software developers can solely focus on abstract models. To achieve the goal, it emphasizes full 

code generation. Initiatives in this camp include Model-Driven Architecture (MDA) [81], 

Model-Integrated Computing (MIC) [136], and Software Factories [61]. They are different in 

various ways, some are generic, others domain specific. However, they all face the same 

challenge that was discussed in Chapter 2 when it comes to full code generation. Figure 3-3 
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provides a simplified illustration of these approaches with important artifacts and code 

generation processes explicitly represented. MDD in practice, in contrast, recognizes the 

essential role of both design models and implementation. Its generated code is an application 

skeleton that requires software developers to fill in details. A typical approach of this camp is the 

Eclipse Modeling Framework (EMF) that was introduced in Chapter 2. 

Figure 3-3: Model-driven development. 
 

MDA is a conceptual framework in support of model-driven development, defined by the 

Object Management Group (OMG) in late 2001. The term “architecture” in MDA is used 

because MDA prescribes certain kinds of models, how those models may be prepared, and the 

relationships of the different kinds of models. Specifically, software development in the MDA 

starts with a Platform-Independent Model (PIM) of an application's business functionality and 

behavior, constructed using Unified Modeling Language (UML) based on OMG's MetaObject 
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Facility (MOF). This model remains stable as technology evolves, extending and thereby 

maximizing software reusability. MDA development tools, available now from many vendors, 

convert the PIM first to a Platform-Specific Model (PSM) and then to a working implementation 

on virtually any middleware platform [13]: Web Services, XML/SOAP, EJB, C#/.Net, OMG's 

own CORBA, or others. 

One of key challenges that MDA faces is transforming the high-level PIM models to 

PSMs that tools can use to generate code. Research on model transformations is still immature 

and there is little experience. The OMG tries to solve the problem by proposing a new standard, 

Query/View/Transformation (QVT), to address the way transformations are achieved between 

models whose languages are defined using the MOF. It contains a language for creating views of 

a model, a language for querying the model, and a language for writing transformation 

definitions. Some desirable features of transformations in MDA include traceability, incremental 

changes, and roundtrip engineering. 

MIC and Software Factories are both domain-specific approaches. MIC was originally 

designed for embedded software development. MIC advocates the application of different types 

of models written in domain-specific modeling languages (DSMLs), and manages the 

interdependency among models at the meta-level [78]. In particular, MIC develops a meta-

programmable generic modeling environment (GME) that allows the creation of models that 

comply with the static semantics defined in the corresponding metamodel [83]. 

Like other model-based approaches, an important task for the MIC technology is the 

generation of embedded systems from domain models. A special property about MIC at this 

point is that embedded systems frequently consist of many physical and software components 

that are customizable and reusable in different systems. Thus, the role of the model-based 
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generators in the MIC framework is just to generate the “glue” required to compose the 

integrated application from library components, consistently parameterize the components, and 

customize the composition platform. 

The primary goal of Software Factories is to industrialize software development, and 

improves software productivity and predictability. The concept is the confluence of model-driven 

development, component-based development, and software product lines. These technologies 

respectively represent three dimensions that software factories are trying to integrate: abstraction, 

granularity, and specificity. Generally speaking, software factories increase the abstraction level 

by focusing on high-level software models in application development, improve the granularity 

of abstractions by increasing the size of the software constructs, and promote the usability or 

value of abstractions by increasing their specificity to some problem domain. 

Framework completion and progressive refinement are two cooperative approaches used 

in Software Factories to generate an executable from requirements. Specifically, framework 

completion is the approach where a software framework that specifically addresses a well-

defined, narrow problem domain is provided, and the abstractions in a model are used to define 

how the variability points in the framework must be completed. In the code generation process, 

only minimal code needs to be generated to fill variability points in a domain-specific framework 

from a domain-specific model. If it is not possible to build a software framework that can 

provide a natural platform for implementing a useful DSL, it may be necessary to define another 

layer of simplifying abstractions into which the first set may be mapped. This second set of 

abstractions may be easier to implement than the first.  The abstractions are then transformed 

into an executable by a series of steps. This process is called progressive transformations. It is 

important to note that the transformation process is inherently parameterized, and operates by 
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binding objects in source models as parameter values, and creating or modifying objects in target 

models. 

3.3.2 Architecture-­‐based	
  Research	
  

Architecture-based research specifically refers to the work done in the research 

community of software architecture, where architecture description languages (ADLs) are 

usually used as modeling notations. Figure 3-4 shows the architecture-implementation mapping 

approaches that are mostly used in architecture-based research. All of them have been 

specifically discussed in Chapter 2. In this section, instead, we focus on two architecture-based 

development activities, architecture-based self-adaptation and product line architectures. Both of 

them involve the process of architecture-implementation mapping as discussed below. 

 

Figure 3-4: Architecture-based research. 
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external sensors, etc.). Architecture-based adaptation [113, 115, 154] brings promising results in 

this regard. This is an approach where changes are first formulated in, and reasoned over, an 

explicit architectural model when environment changes. Changes to the architectural model 

(usually at the level of components and connectors) are reflected in modifications to the 

application’s implementation, while ensuring that the model and the implementation are 

consistent with one another. It is at this point that an architecture-implementation mapping 

approach has the potential to play a significant role by dynamically mapping architecture 

changes to code. 

An architecture-based infrastructure is described in [112] to support software self-

adaptability. Specifically, it separates adaptation activities into two simultaneous processes: 

adaptation management and evolution management. Adaptation management monitors and 

evaluates the application and its operating environment, plans adaptation, and deploys change 

descriptions in architecture terms to the running application. In contrast, evolution management 

is responsible for actually evolving software and maintaining the consistency between 

architecture and implementation. A primary contribution of this approach is the development of a 

comprehensive methodology that integrates different technologies in support of the range of 

adaptations. Significantly, the inherent properties of software architecture, such as separation of 

concerns and abstracting away obscuring details, determines that it is the right abstraction level 

for managing software evolution. 

An integral part of the adaptation infrastructure described above is maintaining the 

consistency between the architectural model and the implementation as changes are applied. 

Dynamic adaptation exposes additional challenges, such as protecting integrity of adapted 

systems, and identification of quiescent states when adaptation can safely occur. 
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Keeping the cost of software changes low is another important requirement in software 

evolution. This is especially emphasized when making changes that are anticipated before 

system development starts, so called anticipated changes [119]. In contrast, changes that are 

discussed earlier in the dissertation can be seen as unanticipated changes, which could result 

from requirement changes, system refactoring, or development incidents. Anticipated changes 

usually occur when developing a family of software products, or a product line. For example, 

producing a new software product simply by extending a related existing product (e.g. adding an 

optional capability, customizing for different platforms). At this point, being able to reuse 

existing code that encapsulates domain, business, and technology information as much as 

possible becomes very important. 

The use of product lines has gradually become a principled form of software reuse over 

the past decade. This is partially due to the application of product line architectures (PLAs) [68], 

an architecture-centric approach to product lines. A PLA explicitly specifies variation points 

(e.g. optional and alternative elements) inside the reference architecture of an entire product line 

to differentiate products. Implementing a PLA is also a mapping problem, except that multiple 

products composed of core elements and variation points are involved. During this process, it is 

important that separation of concerns can be achieved among the different component 

implementations as it is in the architecture. Otherwise extensive changes have to be made to the 

code of existing components to introduce variations, and software reusability is compromised. 

However, separating concerns in the implementation artifacts along preferred boundaries 

involves significant challenges, especially for those crosscutting concerns that are spread over 

the system [102]. 
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3.4 Software Traceability 

Software traceability represents relationships that exist among software artifacts created 

during development of software system [7, 133]. It was originally applied in the area of 

requirements engineering to assess the drift between the software product’s actual behavior and 

the original requirements specified by the customer. The field of software traceability then has 

grown to accommodate other types of artifact relationships across the software lifecycle with the 

goal of enhancing software product quality. In particular, software traceability facilitates the 

important software development tasks of system comprehension, change impact analysis, system 

debugging, as well as roundtrip engineering, as described in Section 2.2.4. 

It is important to highlight that software traceability and conformance management are 

two related, but different areas. This is especially important when it goes to architecture-

implementation mapping. In other words, having correct traceability links established between 

architecture elements and source code does not necessarily mean that the architecture and code 

are conformant. For example, an architecture element (e.g. component) may be incorrectly 

implemented in the linked code element (e.g. class). In this case, the established traceability link 

is still valid though the architecture and code is not consistent. 

Software traceability currently faces some critical challenges, such as automatic creation 

and maintenance of traceability links, the storage of captured links, and link semantics [2]. 

Important research progress has already been made in corresponding areas. However, the 

application of software traceability in practice is still limited. This is primarily due to the 

overhead of creating and maintaining traceability links, given that many software artifacts (e.g. 

requirements specification, design, code, test cases, etc.) may exist during software development 

and each is often under constant change. 
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ArchTrace [104, 105] is a tool to support the evolution of traceability links between 

architecture descriptions and corresponding source code. ArchTrace uses a policy-based 

approach, where different policies specify different actions to take, or constraints that must be 

satisfied, upon the evolution of either software architecture or source code configuration items. 

The execution of one policy can result in the triggering of one or more other policies. For 

example, a policy may define the addition of new traceability links when new versions of source 

files are available, and another policy may suggest the removal of old traceability links after the 

execution of the first policy. The effectiveness of ArchTrace is evaluated by replaying the past 

check-in, check-out data from a real development project, and comparing the set of ideal 

traceability links with the set of actual traceability links produced by ArchTrace. The result is 

positive given the experimental settings. In general, ArchTrace is a good complement to the 

architecture-implementation mappings introduced in this dissertation in the sense that it 

maintains valid architecture-to-implementation traceability links, based on which architecture 

change notifications presented in Section 4.4.3 could be fulfilled to help keep architecture 

descriptions and implementations consistent. 

3.5 Software Change Management 

Generally speaking, software change management includes many different activities, 

such as change impact analysis, configuration management, and even regression testing. In this 

study, however, our focus on change management is limited to the issues of change mappings, 

change notifications, and change control. We do not examine the problems of version control, 

building baselines, etc. Existing work in this limited area are reviewed and compared to change 

management of 1.x-way mapping in this section. 
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ArchEvol [108] was originally designed as an integration of Eclipse, ArchStudio, and 

Subversion. It addressed the evolution of the relationships between versions of the architecture 

and versions of the implementation through the interaction of these three tools. Recent work on it 

[110] has upgraded ArchEvol to an Eclipse-based development environment that supports 

concern-driven software development. It maintains an explicit concern model that consists of a 

hierarchy of concerns (rationales of development decisions) and the links to the code fragments 

that implement corresponding concerns. Based on the model, concerns can be visualized at both 

the code and the architecture level. In addition, heuristic and manual techniques are also 

developed to maintain the concern mapping over time. ArchEvol thus represents a good 

compliment to 1.x-way mapping, which only focuses on structure and behavior architecture-

implementation mapping. 

Lighthouse [130] is an Eclipse plug-in built to support the coordination of multiple 

developers. It develops a new concept called emerging design, an up-to-date representation of 

the design that is extracted from the developers’ code. Basically, Lighthouse collects code 

changes from each developer (by monitoring their workspace), and presents the emerging design 

as a diagram that is annotated with additional information about ongoing changes, such as which 

developer is making what kind of changes to which element. Various filters are also built in 

Lighthouse to reduce the number of elements shown in the emerging design, so that it can be 

scaled for use in large software development. Lighthouse represents an efficient change 

notification mechanism. It is limited in terms of change mapping, however, because developers 

still have to manually respond to each related change. In addition, privacy may be an issue that 

endangers its wide use, given that each developer workspace is monitored and transparent to 

others. 
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The CHS tool maps change-based product line architectures (PLA) to code in a software 

configuration management (SCM) system [84]. CHS supports the activity of generating a 

directory structure and skeleton code in the SCM system. In particular, it requires that generated 

code not be modified by the developers. However, no specific explanations are given regarding 

to how generated and non-generated code should be separated and integrated, and how changes 

should be handled differently in both parts. This is primarily because the focus of CHS is on the 

adoption of a change-based SCM system to map changed-based modeling of a PLA, rather than 

providing a complete solution to architecture-implementation conformance management. The 

idea of protecting generated code from being manually modified can also be found in some other 

research work [17, 18, 92]. As introduced previously, most use so-called spatial separation or 

shallow separation for this purpose, which is not sufficient for architecture-implementation 

conformance management. 
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4 Approach 

This chapter presents a new architecture-implementation mapping approach, 1.x-way 

mapping. It begins with an introduction of basic design principles and underlying insights of the 

approach. After that, an overview of 1.x-way mapping is given, and its four core mechanisms are 

specifically introduced: a code separation mechanism, an architecture change model, 

architecture-based code regeneration, and architecture change notification. Support for 

behavioral mapping and other related issues, such as prevention of programmer-induced negative 

properties are also discussed. At the end of the chapter, a comparison framework is presented to 

highlight the differences between 1.x-way mapping and the existing mapping approaches 

described in Chapter 2. 

4.1 Design Principles 

As stated in Section 1.3, the hypothesis of this research study is that 1.x-way mapping 

can be applied in the development of a realistic system to prevent its architecture-prescribed code 

from being changed by programmers, and support automatic mapping of structural and 

behavioral architecture changes to code. Strictly following this goal, the core design principles of 

1.x-way mapping are summarized as follows: 

• The implementation of software architecture and changes to it should be regulated. 

The freedom of implementing architecture and the effort of maintaining architecture-

implementation mapping can be seen as a tradeoff to make. The difficulties that 

traditional software development faces in this regard comes from the fact that 

architecture is often implemented in ad hoc ways, and architecture-prescribed code is 

mixed with implementation details. As a result, it is hard for programmers to know 
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either how or when to update architecture when code changes occur. In contrast, 

approaches like architecture frameworks, EMF, and ArchJava described in Chapter 2 

address the issue by regulating the implementation of the architecture through the use 

of pre-defined code, code separation, or special programming language constructs. 

Correspondingly, it is relatively easier for them to maintain the architecture-

implementation conformance, even though problems still exist as discussed earlier in 

Section 2.3. 

• The best way to map code changes to architecture is to avoid the need for such 

reverse mapping by protecting generated code from manual modification. As 

mentioned earlier, the code-to-architecture mapping itself is essentially a problem of 

abstraction [125], and is hard to be fully automated. Moreover, it conflicts with the 

principle of architecture centrality in software development, which requires the all 

architecture related changes should start from the architecture and be mapped to code 

afterwards. Therefore, we believe a good way to address the difficulty of code-to-

architecture mapping is simply to avoid it. This can be done through the regulation of 

architecture implementation discussed above, for example, by using code separation. 

• Architecture-prescribed code should be generated, and updated solely through code 

generation. Information duplication has been identified as an important cause of 

inconsistency.  In the context of architecture-implementation mapping, this means 

that the same information exists or is represented in both architecture and source 

code. The best way to address the problem of information duplication is to follow the 

principle of Don’t Repeat Yourself (DRY): every piece of knowledge must have a 

single, unambiguous, authoritative representation within a system [72]. Code 
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generation can be used in this process to automatically update representations of the 

same information in different artifacts. 

• Architecture changes should be modeled and manipulated as an independent software 

artifact. Architecture changes play an important role in architecture-implementation 

mapping, especially if we want to reduce the impact of code regeneration on non-

related code, and notify programmers about the changes that were just made. Explicit 

modeling of architecture changes not only meets these demands, but also opens up the 

opportunities for more advanced development activities, such as concurrent 

architecture changes, and change replay. Moreover, the fact that software architecture 

is located at a relatively high abstraction level and contains fewer constructs 

compared with software programs also makes architecture change modeling a 

possibility [155]. 

• Only “executions of significance” should be modeled in behavioral architecture. 

Software architecture encompasses principal design decisions about a software 

system, and it should not be expected to be a complete model of the system. This is 

especially the case when it goes to system dynamics, which could contain 

overwhelming details that, if represented in the architecture, would greatly degrade 

the usability of software architecture. Thus, it is advocated in 1.x-way mapping that 

only executions that are significant enough to be visible at the architecture level, or 

“executions of significance”, should be modeled and mapped to code. Note that the 

definition of significance is up to stakeholders or software architect to decide. Same 

kind of system behavior may be seen of different importance in the development of 

different systems. From this perspective, the term “significance” is actually as 
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subjective as the term “principal” in the definition of software architecture discussed 

in Section 3.1.1. 

4.2 Overview 

In this section, we present an overview of 1.x-way mapping. The name comes from the 

fact that 1.x-way mapping only allows manual changes to be initiated in the architecture (“1”) 

and a separated portion of the code (“.x”), with architecture-prescribed code updated solely 

through code generation. 1.x-way mapping consists of four core mechanisms: deep separation, 

an architecture change model, architecture-based code regeneration, and architecture change 

notification. Figure 4-1 shows an overview of 1.x-way architecture-implementation mapping.  

Software architecture in 1.x-way mapping is modeled as a configuration of components 

with executions of significance (i.e. behaviors) defined by UML-like sequence diagrams and 

state diagrams. Note that the amount of behavior modeling does not affect the effectiveness of 

1.x-way mapping. In other words, 1.x-way mapping can also support situations where extensive 

behavior modeling is involved, although this is not recommended as discussed earlier in this 

chapter. The architecture modeling notation used in 1.x-way mapping is xADL 2.0, an 

extensible, XML-based architecture description language. Java is used as the programming 

language in this exposition. It is assumed that all the development activities shown in the figure 

take place in an integrated software development environment (IDE) [76, 144, 145], where the 

tools used for creating and managing the system at different abstraction levels are able to 

communicate with each other and share information. A typical example of such an environment 

is ArchStudio 4, an Eclipse-based tool integration environment where our work is performed. 
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Figure 4-1: An overview of 1.x-way architecture-implementation mapping. 
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As shown in the figure, the implementation of each architecture component is separated 

into two independent program elements: architecture-prescribed code and implementation 

details. The former is automatically generated. It codifies all the externally visible information of 

a component that is specified in the architecture, including its identity, interfaces, and properties. 

The latter represents the internal implementation of a component that is to be manually 

developed by programmers.  

On top of the separated code, three tools (represented by ovals in the figure) work closely 

in the IDE to map architecture changes to the code. Architecture Editor is responsible for the 

manipulation of architecture models. In particular, it maintains an explicit change model that 

records and classifies all the considered architecture changes. Mapping Tool is able to 

automatically map most of the changes to code without requiring manual work on the code, 

based on the fact that all the information about the kinds of changes (e.g. componentChanges, 

linkChanges, etc.) is recorded in the change model. For those architecture changes that may 

require modifications to user-defined code, change notifications are sent to Code Editor. In 

response, warning messages are prompted in the code to highlight changes that have to be made. 

To reduce the number of unnecessary messages, a plug-in could be built to allow programmers to 

register for particular kinds of architecture changes. This part of the work is future work, which 

is why it is represented by a dashed line in the figure. 

1.x-way mapping consists of four core mechanisms: a deep separation mechanism, an 

architecture change model, architecture-based code regeneration, and architecture change 

notification. Each of them is introduced in the following subsections. Support for behavioral 

mapping, and prevention of programmer-induced negative properties are also discussed. 
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4.3 Code Separation and Integration 

The 1.x-way mapping approach exploits a new code separation mechanism to decouple 

architecture-prescribed code and user-defined details of each architecture component. The 

separated code is explicitly integrated by a program composition mechanism (e.g. method calls, 

software frameworks), which not only supports the integration of separated behavioral code, but 

also enables mutual independence of separated code. This is essentially different from existing 

code separation approaches, such as filling-in-blanks and subclassing. 

4.3.1 Deep	
  Separation	
  

A new code separation mechanism, deep separation or linguistic separation, is developed 

in 1.x-way mapping to decouple generated and non-generated code. It separates architecture-

prescribed code (generated) and user-defined code (non-generated) of each component into two 

independent program elements (e.g. classes), and relies on program composition mechanisms 

(e.g. method calls) to explicitly integrate separated code. Specifically, the user-defined code of a 

component implements a set of low-level operations, or primitive operations, from which high-

level operations in the architecture-prescribed code are constructed. Meanwhile, available 

architecture resources (e.g. required interfaces, architecture properties) are passed to the user-

defined code for use in the implementation of those low-level operations. This is essentially 

different from existing code separation approaches such as filling-in-blanks and subclassing 

described in Section 2.2.1. Those approaches are called shallow separation or spatial separation 

in this work, because their code is physically separated, but is still coupled and implicitly 

integrated by some inherent language relationship (same class, inheritance, etc.). 
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Architecture‐prescribed code of a component comprises the implementation of all the 

prescribed information about the component, including its identity, provided and required 

interfaces, properties, and behavior definitions. It includes knowledge about architecture 

topology and message exchange among components. In particular, architecture-prescribed code 

of a component in 1.x-way mapping includes the implementation of a set of operations that are to 

be provided by the component, and each of them is simply implemented by redirecting requests 

to corresponding user-defined code of the component. Figure 4-2 shows a set of rules defined in 

1.x‐way mapping to specify how the architecture-prescribed code of a component should be 

generated. Notice that these rules are not intended to be exhaustive, given that extensibility is an 

essential feature of software architecture, and additional rules may have to be defined when new 

elements are added. In addition, all of them are based on the assumption that Java is used to 

implement the architecture. With a different programming language used, the rules should be 

modified correspondingly. 

Figure 4-2: Rules of deep separation for architecture-prescribed code. 
 

Rule #1: A class is generated for each architecture component as the 
architecture‐prescribed code. The class name by default is the component 
identity suffixed with “Arch”.

Rule #2: The generated class implements all the provided interfaces 
declared by the corresponding component. Each method in a provided 
interface, unless defined by a sequence diagram, is implemented by 
redirecting the request to user-defined code.

Rule #3: Each required interface is implemented as an attribute of that 
interface type in the generated class.

Rule #4: The architecture-prescribed code of a component maintains an 
explicit reference to the corresponding user-defined code, and initializes 
the reference by calling the setArch() method in its constructor method.  
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User‐defined code provides primitive operations that architecture‐prescribed code uses to 

construct higher‐level operations. It contains implementation details that are not specified in the 

architecture, such as how a specific algorithm should be implemented, which system library to 

use, domain‐specific code reuse, or the application of an implementation technology such as web 

services, CORBA, Java RMI, etc. All these details are to be manually completed by 

programmers. Compared with architecture‐prescribed code, which essentially codifies externally 

visible characteristics of a component, user‐defined code represents the internal implementation 

of a component. It does not communicate directly with other connected components, and is 

completely hidden from the externals in 1.x-way mapping. Figure 4-3 lists the rules of deep 

separation for user-defined code. 

Figure 4-3: Rules of deep separation for user-defined code. 
 

A calculator application is used as an example in this dissertation to illustrate how 1.x-

way mapping works. Its structural architecture is shown in Figure 4-4. This is not a complex 

application. However, it provides concrete situations in which automatically maintaining the 

architecture-implementation conformance is difficult. In short, the calculator works as follows. 

The GUI component is responsible for collecting the user’s input of digits and operators, and 

displaying both intermediate and final results; the Controller component accepts calculation 

Rule #1: The user-defined code of a component implements all the 
operations requested by the corresponding architecture-prescribed code. 
In case an interface (e.g. required operations) is generated for this 
purpose, the user-defined code should implement all the methods in the 
interface.

Rule #2: The user-defined code of a component must maintain an explicit 
reference to its architecture-prescribed code, and initialize the reference 
through its provided operation, setArch.
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requests from GUI, and either pushes entered digits and operators to the corresponding stack or 

sends them to Math Unit for calculation, depending on which state it is in and what the input 

value is. The Register component saves the intermediate result that is to be displayed. Whenever 

its value is changed, GUI is notified and updates its display field correspondingly. 

Figure 4-4: Structural architecture of the calculator application. 
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automatically generated. It contains a list of operations that ControllerArch expects 

ControllerImp to provide. One of them is setArch (line 19), which is essential to the 

implementation of all architecture components, while the other operations in the list are 

component specific. It is through setArch that ControllerArch passes itself as a reference to 

architectural information to ControllerImp (line 09). What it also implies is the existence of a 

variable (_arch, line 24) of the type ControllerArch, or architecture-prescribed code, in the 

corresponding implementation ControllerImp, which is to be manually developed by 

programmers. In the example, an outline of ControllerImp (lines 23-30) is also generated for 

programmers to start with. 

01: class ControllerArch implements IController{ 
02:  IControllerImp _imp; 
03:  IOperatorStk _operatorStk; 
04:  IOperandStk _operandStk; 
05:  IRegister _register; 
06:  IMathUnit _mathUnit; 
07:  public ControllerArch(){ 
08:   _imp = new ControllerImp(); 
09:   _imp.setArch(this); 
10:  } 
11:  public void enterOperator(String opcode){ 
12:   _imp.enterOperator(opcode); 
13:  } 
14:  public void enterDigit(String digit){ 
15:   _imp.enterDigit(digit); 
16:  } 
17: } 
18: interface IControllerImp{ 
19:  public void setArch(ControllerArch arch); 
20:  public void enterOperator(String opcode); 
21:  public void enterDigit(String digit); 
22: } 
23: class ControllerImp implements IControllerImp{ 
24:  ControllerArch _arch; 
25:  public void setArch (ControllerArch arch){ 
26:   _arch = arch; 
27:  } 
28:  public void enterOperator(String opcode){…} 
29:  public void enterDigit(String digit){…} 
30: } 
 
List 4-1: Applying deep separation to the implementation of Component Controller. 
 



www.manaraa.com

75 
 

Deep separation is able to prevent mistaken changes of generated architecture-prescribed 

code given that programmers’ modifications to the code are precluded from the program element 

where generated code is located (e.g. ControllerArch and IControllerImp in List 4-1). At this 

point, a configuration management system (e.g. Subversion) can be used to ensure that 

architecture-prescribed code (e.g. ControllerArch) be only updated through code regeneration by 

the architect. A challenge that deep separation faces is explicitly integrating separated code, 

whereas this is automatically done by the inherent language relationship with shallow separation. 

In particular, this has to be done in the presence of frequent changes that may be made to both 

architecture and source code during software development. The remainder of this chapter 

specifically discusses how code integration and change management are handled. 

4.3.2 Code	
  Integration	
  

The integration process is as suggested in Figure 4-1. The architecture information such 

as references to other connected components is passed from architecture-prescribed code to user-

defined code; Meanwhile user-defined code provides primitive operations to architecture-

prescribed code to implement higher-level operations. This is essentially a process of program 

composition, and can be done either through simple method calls or by building a source code 

integration framework. In this study, we only use method calls to integrate separated code. 

Specific analysis is also provided below about how a source code framework may be built for 

integration. 

A straightforward way of integrating separated code in 1.x-way mapping is using object 

composition or method calls, as illustrated in List 4-1.  Operations present in architecture-

prescribed code are simply implemented by calling the corresponding operation (e.g. with the 

same signature) defined in user-defined code. Figure 4-5 further illustrates this by providing a 
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high-level view of the integration process. Primitive operations in the figure represents a Java 

interface that consists of a list of operations that the architecture-prescribed code expects its user-

defined code to provide. This is implemented as IControllerImp in List 4-1. What is special 

about Figure 4-5 is that it shows two user-defined implementations providing the same set of 

operations. This is to highlight the fact that specific implementations are encapsulated from the 

architecture-prescribed code with deep separation enforced. The architecture-prescribed code 

only sees the list of provided operations, without being aware of underlying different 

implementations. The advantage of integrating code with method calls is that it is easy to 

implement, and does not require redundant code. The disadvantage, however, is that it provides 

little control over the integration process. 

 

 

 

 

 

 

 

Figure 4-5: Integrating code by method calls. 
 

In contrast, another way to integrate code is using a software framework, an abstraction 

in which common code providing generic functionality can be selectively overridden or 

specialized to provide specific functionality [75]. Figure 4-6 suggests an example of such a 

framework. Compared with method calls, an integration framework not only integrates code, but 

also gives developers a chance to customize the process to satisfy any special requirements, such 

Architecture-
prescribed code

Primitive 
operations

User-defined 
implementation 

1

User-defined 
implementation 

2

_imp

 



www.manaraa.com

77 
 

as architecture-based dynamic adaptation. In addition, the use of an integration framework also 

makes it possible for architecture-prescribed code and user-defined code of a component to run 

on different machines, with the integration framework taking care of network-related 

communication issues. The downside of using such an integration framework is that additional 

application independent code is induced. In particular, it is often required that the deployed 

application be deployed in an environment where the framework is installed. 

Figure 4-6: An example of code integration framework. 
 

The framework shown in the figure consists of two kernel classes, CompArch and 

CompImp, which represent the base classes for architecture-prescribed code and user-defined 

code of each architecture component. They encapsulate integration related activities from the 

overlying application, and communicate with the underlying xRuntime to make method calls. It 

is xRuntime that explicitly controls which specific operation in user-defined code is called when 

a request from architecture-prescribed code arrives. The code below in List 4-2 is an example of 
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programmer. There, CompImp does a reverse process, and translates the received request back to 

a regular method call. 

01: class ControllerArch extends CompArch implements IController{ 
02:  … 
03:  public void enterOperator(String opcode) { 
04:   request(“enterOperator”, opcode); 
05:  } 
06:  public void enterDigit(String digit) { 
07:   request(“enterDigit”, digit); 
08:  } 
09:  … 
10: } 
 
List 4-2: Generated code based on an integration framework. 
 

The presentation above simply highlights another possibility for integrating code in 1.x-

way mapping, and is far from being a complete solution. More work is required concerning some 

specific issues, such as encapsulation of function calls and configuration of processing logics. 

Addressing some of these issues may require a functional programming language. The payback 

of having such a framework is as discussed previously: full control can be obtained over how the 

integration is done, and opportunities for dynamic reconfiguration and runtime reuse are opened 

up. This is beyond the focus of this study, which is about maintaining architecture-

implementation conformance in software development. 

4.3.3 Discussion:	
  Deep	
  Separation	
  vs.	
  Shallow	
  Separation	
  

As discussed in Section 2.2.1, separating generated code and non-generated code is not a 

new idea and has been around for decades. An important difference between the 1.x-way 

mapping approach and other code separation based approaches is the application of the deep 

separation mechanism, which is supported by a set of change management mechanisms. The 

change management of 1.x-way mapping is presented in next section. In this section, we 
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highlight the advantages of deep separation over traditional shallow separation in the context of 

architecture-implementation mapping. 

As mentioned at the beginning of this section, deep separation separates the code of an 

architecture component into two independent program elements, and relies on external program 

composition mechanisms to explicitly integrate separate code. In contrast, shallow separation 

relies on certain program built-in relationships (e.g. same class, inheritance, partial class) to 

automatically integrate separated code. Due to this essential difference, the code they can protect, 

the relationship between their separated code, and their potential usages are significantly 

different as summarized below. 

• Deep separation provides more comprehensive code protection. With shallow 

separation, code integration is done in a static and rigid way. The code that can be 

separated, and thus protected, is limited to those that can be integrated in the exact 

pre-defined way and additional constraints are also inevitably induced. For example, 

filling-in-blanks as discussed in Section 2.2.1 mixes generated and non-generated 

code in the same program element; subclassing can only support code that can be 

clearly separated with an inheritance relationship; partial class requires that separated 

code cannot contain methods of the same signature. This is also an important reason 

why existing code separation mechanisms often fail to protect behavioral code since 

there is no appropriate language relationship that can support so. Deep separation, in 

contrast, relies on a flexible external program composition mechanism (e.g. method 

calls) to integrate separated code. The code that can be supported is relatively 

independent of how the code is integrated. Thus, more kinds of code, including 

behavioral code, can be supported. 
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• What deep separation essentially reflects is the spirit of code library [82] and virtual 

machine [119]. Deep separation enforces architecture-centric development: 

architecture-prescribed code can only be updated through code generation from the 

architecture. User-defined code plays the role of code library or programming 

platform in this context, based on which architecture-prescribed code is generated. 

For example, libraries of architecture implementations can be constructed for various 

architecture features based on the operations provided by underlying user-defined 

code without containing implementation details. 

• Deep separation makes the separated code of each component mutually independent. 

Should the code require regeneration later, only the architecture-prescribed code is 

overwritten. The work on the user-defined code remains unaffected, unless the 

architecture is radically changed as discussed in next section. Similarly, modifications 

to user-defined code have no impact on the architecture-prescribed code, assuming 

the required operations are still provided. This reduces the chance that inconsistency 

may happen. Moreover, it gives both architect and programmers more freedom to 

work on their own part compared with shallow separation mechanisms such as filling-

in-blanks and partial class. 

• Finally, deep separation makes the usage of architecture information (e.g. services 

provided by other connected components) in user-defined code explicit and 

manageable. All accesses to architecture resources have to go through a handle 

(_arch in List 4-1) maintained in user-defined code. This opens up opportunities for 

advanced activities like architecture change requests discussed later in Section 4.4.3 

that can be done based on static program analysis. In addition, prevention of user-
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induced negative properties is enabled based on deep separation. This is specifically 

discussed in Section 4.4.4. 

4.4 Change Management 

Software artifacts are subject to constant changes during the development. Software 

architecture and code are not exceptions. These changes significantly endanger the conformance 

between the artifacts. Important techniques developed in 1.x-way mapping in this regard include 

an architecture change model, architecture-based code regeneration, and architecture change 

notification. We also discuss in this section how 1.x-way mapping could be extended to prevent 

programmer-induced negative properties. 

4.4.1 Architecture	
  Change	
  Model	
  

A significant challenge that 1.x-way mapping faces is mapping architecture changes to 

the code after the architecture is first implemented. This consists of two specific tasks: mapping 

changes to the architecture-prescribed code, and mapping across the separation boundary to the 

user-defined code. In particular, different architecture changes often have different impacts on 

the implementation of an architecture component. For example, redirecting a link between 

components supposedly does not affect component implementations, given that an architecture 

component is an independently deployable unit of composition. In contrast, removing an 

interface from a component requires changes to both architecture-prescribed code and user-

defined code of the component. Thus, architecture change management in 1.x-way mapping 

must be able to differentiate different kinds of architecture changes, and automatically map them 

to code in specific ways. 
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Figure 4-7 shows various types of architecture changes and how they are managed in 1.x-

way mapping. Considered changes include link changes, component changes, and behavior 

changes. Of these different changes, link changes are relatively easy to handle, simply by 

regenerating code that is responsible for bootstrapping the program and instantiating components 

with connection information. For the rest of this dissertation, the focus will be on the mapping of 

component changes and behavior changes to code. Note that Update Component and Update 

Behavior both consist of a number of low-level operations, such as add interface to a component 

or remove a participant from a sequence diagram. They are not shown in the figure for brevity. 

 

Figure 4-7: Architecture changes in 1.x-way mapping. 
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To support the mapping of architecture changes to the code, an architecture change model 

is maintained in 1.x-way mapping with extensions made to the xADL architecture description 

language. Basically, all architecture elements are monitored, and all the considered changes 

made to them are automatically recorded and classified. An initial design of the architecture 

change model is shown below in List 4-3. As can be seen, a new element <archChange> (line 

02) is added to the root (<xArch>) of the architecture description. Under the new element, there 

are multiple <changes> elements (lines 03 - 11), each of which represents a change session that 

includes a series of specific changes as listed in Figure 4-7. The status of each change session is 

either “mapped” (line 03) or “unmapped” (line 09), depending on whether a map-to-code process 

is done on the session or not. A new change session will be created automatically if the 

architecture is modified, and no “unmapped” change session exists. 

01: <xArch> 
02:   <archChange> 
03:     <changes status=”mapped”> 
04:       <compChange type=”add”> … </compChange> 
05:       <linkChange type=”remove”> … </linkChange> 
06:       … <!-- Other specific changes --> 
07:     </changes> 
08:     … <!-- Additional change sessions --> 
09:     <changes status=”unmapped”> 
10:       … <!-- Specific changes --> 
11:     </changes> 
12:   </archChange> 
13: </xArch> 

List 4-3: Basic structure of architecture change model. 
 

Having an explicit architecture model can benefit many related activities, such as change 

analysis, redo/undo, and change reuse. Some of these applications are future work and are further 

discussed in Chapter 7. Different usages often have different requirements in the content of the 

created change model. In the design of our architecture change model, we intentionally make it 

independent of the following process of mapping to code. That said, the change model in 1.x-

way mapping contains much more information than those that are needed to either regenerate 
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code or send change notifications as introduced in the following subsections. Basically, all the 

architecture changes are recorded even though only a portion of them is of interest to the 

mapping process. 

4.4.2 Architecture-­‐based	
  Code	
  Regeneration	
  

In principle, all architecture changes require the update of architecture-prescribed code. 

An easy approach to accomplish this is brute force regeneration. It completely regenerates code 

for the architecture regardless of what is changed. As discussed in Section 2.3, this approach 

suffers from the challenge of conflict resolution. In addition, complete code regeneration is also 

not scalable in the sense that even a small, localized change may require regenerating a 

disproportionately large part of the code. A recent code regeneration strategy is so called 

incremental change, which only regenerates code for the changed portion, such as an added 

interface or a removed link. This approach reduces the amount of regenerated code, and thus, 

minimizes the impact of code regeneration to the rest of the system. The problem is that 

incremental change may break the system structure and consistency if the regenerated portion is 

in a highly cohesive entity, such as an architecture component [150]. Moreover, it is often hard 

to clearly tell which specific part of the modified architecture element should be regenerating 

code for, given that change impact analysis itself is still a research problem. 

The 1.x-way architecture-implementation mapping approach uses an architecture-based 

code regeneration mechanism that sits between complete regeneration and incremental change. 

It addresses the above problems by only regenerating code for modified components. For each 

modified component, complete regeneration is enforced. With complete regeneration for each 

modified component, the integrity of component implementation is protected and structure or 

inconsistency issues are avoided. Meanwhile, the property of loose coupling between 
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components makes incremental change at the component level a reasonable design to reduce the 

amount of code regeneration. Regenerating code for a specific component does not affect the 

implementation of other components, and thus the consistency of the whole system. Figure 4-8 

illustrates how architecture-based code regeneration is different from complete regeneration and 

incremental change. 

Figure 4-8: Code regeneration mechanisms. 
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point, not only architecture-prescribed code of the modified components has to be completely 

regenerated, but also change notifications have to be sent to the user-defined code. 

4.4.3 Architecture	
  Change	
  Notification	
  

In contrast with architecture-prescribed code, it is not possible to automatically update 

user-defined code when architecture changes happen. If it were, we could simply move the part 

that can be automatically updated to architecture-prescribed code to improve software 

productivity. What can be done in general is to send change-related information across the 

separation boundary to user-defined code. Specifically, two kinds of information can be 

transferred: (1) what is changed in the architecture and (2) what needs to be changed in user-

defined code. In this study, information about (1) is called architecture change notification and 

information about (2) is called architecture change request. In this dissertation, 1.x-way mapping 

only supports architecture change notification. Specific analysis is also provided below about how 

change requests may be generated, as a basis for future research. 

An architecture change notification contains information describing what element 

(interfaces, properties, etc.) is changed in the architecture. The architect’s comments when 

making those changes may also be included to give programmers more information. Note that this 

essentially addresses a problem of software architecture failure to capture design rationales that 

was identified earlier. All the notifications are shown in the code editor in the form of warning 

messages. In particular, the user-defined code of a component only gets notifications for changes 

that are made to that component. This reduces unnecessary change notifications, decreasing the 

manual analysis work needed to process the notifications. To further reduce the number of 

unnecessary notifications, a plug-in could be built to allow programmers to register for particular 

architecture changes. The registration can then be sent to and saved in the architecture as 
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traceability information. When a registered change happens, notifications will be sent following 

established traceability links. 

In contrast, sending architecture change requests to user-defined code is essentially a 

problem of change impact analysis [5], a topic about identifying what to modify to accomplish a 

change. This is necessary because implementations in user-defined code may need specific 

architecture information, such as details of a required interface. When the element is changed in 

the architecture, related user-defined code should be updated correspondingly.  Existing 

solutions include the application of transitive closure, inference, and program slicing. However, 

it remains to be seen how well these approaches can be applied in architecture-implementation 

mapping. 

What is special about 1.x-way mapping is that all the architecture information is accessed 

explicitly through a single reference in user-defined code, as shown in Section 4.3.1. This 

facilitates the identification of the places where a changed architecture element is used. What can 

be done is to create traceability links between architecture elements and their usages in user-

defined code through static program analysis. Based on the trace information, change requests 

can be generated. For example, if a component interface being used by user-defined code is 

removed, a warning message should be displayed in corresponding lines of user-defined code, 

just like a compiler works in a programming IDE. The challenge, however, is keeping these 

traceability links valid given that source code is under constant change as well. 

Both architecture change notifications and requests represent an important improvement 

over existing architecture-implementation mapping approaches. None of existing approaches 

cited earlier support notification during software development. At best, a program complier is 

used to detect inconsistencies in the code and return warning messages. 
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4.4.4 Discussion:	
  Prevention	
  of	
  Programmer-­‐induced	
  Negative	
  Properties	
  

As introduced previously, 1.x-way mapping is able to protect architecture-prescribed code 

from being contaminated when developers work on user-defined code. What this essentially 

means is that the code does not lose properties of the architecture (e.g. specified elements). 

However, programmer-induced changes in user-defined code may also include new negative 

properties [72]. For example, the implementation of a component may (inappropriately) reference 

another component that is not connected to it in the architecture, obviously breaking the 

architecture-implementation conformance. Because programmers are granted full control over the 

user-defined code, it is technically hard to prevent this from happening during software 

development. As a result, most existing architecture-implementation mapping approaches either 

ignore the problem or simply rely on the after-the-fact consistency checking to detect it. 

With 1.x-way mapping, a correct-by-construction method, the programmer-induced 

negative properties can be avoided from the very beginning with appropriate tools. Figure 4-9 

illustrates how this may be done based on deep separation of 1.x-way mapping. Dashed lines in 

the figure represent illegal accesses from a component to the code of another unconnected 

component. Preventing illegal access to the user-defined code of a component is relatively 

straightforward. As introduced in Section 4.3, the user-defined code of a component does not 

communicate directly with other connected components with deep separation enforced. What can 

be done is to apply an access control mechanism (e.g. name scrambling), so that the user-defined 

code of a component is only accessible to its architecture-prescribed code, hidden from clients of 

the component. Illegal accesses to user-defined code from other components are thus prevented. 
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As to the architecture-prescribed code of a component, it is automatically generated and is 

not meant to be edited by programmers in 1.x-way mapping. If the architecture-prescribed code of 

a component is only accessible to the architecture-prescribed code of other components, illegal 

accesses from the user-defined code can be avoided as well. One possible way to do this is to 

expose the services, instead of the direct reference, of a component’s architecture-prescribed code 

to other components and hide the mapping of services to references from programmers. As a 

result, the architecture-prescribed code of a component is accessed in a pre-defined way that is 

only understandable to the machine. A specific example of such an application is [35], where off-

the-shelf middleware was used to implement architecture connectors between components. 

Figure 4-9: Prevention of programmer-induced negative properties. 
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analysis mentioned in Section 4.4.3, and is not detailed here. Supporting and evaluating theses 

approaches is not part of this dissertation, and represents future directions for 1.x-way mapping. 

4.5 Support for Behavioral Mapping 

An essential task of architecture-implementation mapping is to have the modeled 

information correctly preserved in the code. For 1.x-way mapping to support behavioral 

mapping, it is important that (1) system behaviors be modeled in a form that is amenable to code 

generation; (2) there is a way to enforce deep separation to the corresponding code. The change 

management mechanisms of 1.x-way mapping can then be applied as presented earlier. In this 

study, we simply reuse pragmatic techniques for the above two activities with necessary 

adaptations made. This allows us to focus on the consistency control of 1.x-way mapping. Each 

of these two activities, however, could be or is a research area. With new approaches to them 

available, 1.x-way mapping could support more behavioral models. 

4.5.1 Architecture	
  Behavioral	
  Modeling	
  in	
  1.x-­‐Way	
  Mapping	
  

Architecture behavioral modeling in 1.x-way mapping is based on limited UML state 

diagrams and sequence diagrams. Our adapted state diagram captures the runtime behavior of a 

specific architecture component in terms of its state changes. Our sequence diagram defines a 

sequence of interaction calls between a component and its connected components with respect to 

one of its provided operations. Furthermore, in our current implementation, both call sequences 

and state changes do not contain advanced control structures such as iteration and branch. In 

addition, all object-specific features are not supported in our diagrams since the modeled elements 

are components (which may e.g. be implemented as a set of classes) rather than objects in the 

object-oriented sense. 
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Figure 4-10 presents an example of two behavioral diagrams defined for the calculator 

application introduced in Section 4.3.1. The state diagram on the left models state changes of the 

Controller component. It starts from the state of WaitForInput, and switches between 

WaitForNumber, WaitForOperator, and EnteringNumber in response to invocations of its 

provided operations, enterDigit, enterOperator, and enterMR (i.e. memory recall). For some state 

transitions, an additional action is also specified (following “/” in the transition label) to be called 

before the target state is entered.  

The sequence diagram on the right depicts how the MathUnit component collaborates with 

the OperandStack component with respect to its execute operation, assuming a binary operator is 

to be calculated. As shown in the figure, MathUnit first fetches two operands from OperandStack 

by calling its provided pop method, then makes the calculation through a self message call, and 

finally pushes the result back to the stack with another message call. Note that all the parameter 

passing and value assignments are explicitly represented in the figure. This is not required in a 

standard UML sequence diagram, and is an important adaptation that we made in 1.x-way 

mapping to facilitate behavioral code generation. This is further discussed later in this section. 

Figure 4-10: Example of a behavioral architecture definition. 
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Overall, a state diagram in 1.x-way mapping describes all of the possible states that a 

particular architecture component can get into and how the component’s state changes as a result 

of events (i.e. invocations of the component’s provided operations) that reach the component. A 

state diagram is focused on describing the behavior of a single component in response to external 

stimuli. As mentioned earlier, a standard UML state diagram contains many features, such as 

conditional transitions, superstates, and entry/exit events. In this study, however, only selected 

elements are implemented, allowing us to focus on the mapping of state diagrams to code. 

Specifically, a state diagram of 1.x-way mapping consists of the following two key elements: 

• State. A state is represented by a rounded rectangle labeled with the state name in a 

state diagram. A component starts from an initial state, represented by the closed 

circle, and can end up in an optional final state, represented by the bordered circle. A 

state can either change to another state or remain in the original state when an event 

arrives, but only one transition can be taken out of a given state. 

• Transition. Transitions are lines with arrowheads in a state diagram. A transition 

represents movement from one state to another, and is associated with a transition 

label. The format of a transition label is: Event / Action. Event is required, and 

triggers the transition. In our current implementation, an event is simply implemented 

as the invocation of a method that is provided by the component. Events can come 

from the external world, such as end-user input, external sensors, etc. Action is 

optional. It represents an (usually user-defined) operation that is to be called before 

the target state is entered. This gives user an opportunity to customize the state 

transitions. 
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A sequence diagram in 1.x-way mapping complements a state diagram by describing the 

interactions among architecture components. It shows a number of participating components and 

the messages (i.e. procedure calls) that are passed between these components with respect to an 

operation in one of a component’s provided interfaces. Note that it is not recommended in 1.x-

way mapping to make a sequence diagram for every single operation of a component. Instead, we 

believe sequence diagrams are most appropriate for those operations that exhibit interesting 

behavior, or “executions of significance” as described at the beginning of this chapter. This 

distinguishes our approach from MDD approaches that try to make UML a programming 

language, as discussed in Section 3.1.2. 

Similar to state diagrams, we limit the standard UML sequence diagram: features like 

frames and new/delete messages are not included. The resulting sequence diagram primarily 

consists of: 

• Participant. A participant component is shown as a box at the top of a dashed 

vertical line labeled with the component name. The leftmost participant is the 

component (called host component) whose operation is defined in the sequence 

diagram. From left to right are the components that the messages are sent to. 

• Message. A message depicts the interactions among participants. It could be 

asynchronous event notifications, synchronous procedure calls, and so on. In our 

adapted sequence diagram, all this information is encapsulated and represented in 

architecture connectors and is not explicitly represented in a sequence diagram. In 

addition, a message must be labeled with the name and parameters of the 

corresponding message call. This is specifically discussed later in this section. 
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Generating code from state diagrams is a common practice with many CASE tools [106]. 

In contrast, generating code from UML sequence diagrams is rarely supported. This is partially 

because some necessary information for code generation is missing in standard sequence 

diagrams, such as object assignment and how objects are passed between message calls [46]. In 

particular, the implementation of a sequence diagram is often found spread over the code (e.g. 

classes) of the participants that are involved [118]. This makes the code generation process very 

difficult since the code generator not only needs to identify the right place to generate code, but 

also has to deal with conflicts caused by diagrams that have overlapping message calls. 

In response, we added two additional restrictions to our adapted sequence diagram. First, 

variable assignments and parameter passing must be explicitly represented for each message call. 

In Figure 4-10, variables v1, v2, opcode, and r are thus explicitly assigned and passed. Second, 

all message calls must start from the component whose operation is defined by the diagram. In 

other words, only operations that are directly called in the specified provided interface operation 

are considered in the diagram. With these restrictions, code can be easily generated. There are 

still situations where minor editing may be needed on generated code, for example, to deal with 

Java exceptions that cannot be captured in a sequence diagram. This is a limitation that is 

imposed by the current modeling technology, and is not inherent to the design of 1.x-way 

mapping. 

4.5.2 Applying	
  Deep	
  Separation	
  to	
  Behavioral	
  Code	
  

Once system dynamics are modeled in the supported form so that code can be 

automatically generated, the next challenge is finding a way to apply deep separation to the 

corresponding implementation. The methodology presented in Section 4.3.1 is still applicable, 

with architecture-prescribed code and user-defined code separated into two independent classes. 
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A difference is how the operation specified by a sequence diagram is implemented in the 

architecture-prescribed code. Instead of passing the request to user-defined code, the 

implementation of the operation is now populated from what is defined in the diagram with each 

message call directly translated to a line of code. List 4-4 is a portion of the generated 

architecture-prescribed code of Math Unit based on what is defined in Figure 4-10. The 

implementation of the execute operation (lines 04-07) directly comes from the corresponding 

diagram. Note that a reference to the target component is prefixed to each interaction call (e.g. 

_operandStk before pop). This is a variable that was created during code generation, which is 

elaborated in next chapter. 

01: class MathUnitArch implements IMathUnit{ 
02:  …//The basic structure is not changed. 
03:  public void execute(String opcode){ 
04:   double v1= _operandStk.pop(); 
05:   double v2= _operandStk.pop(); 
06:   double r= executeBinary(opcode, v1, v2); 
07:   _operandStk.push(r); 
08:  } 
09:  …//The implementation of other operations 
10: } 
 
List 4-4: Generated code from a sequence diagram. 
 

Applying deep separation to the implementation of our state diagram is based on the state 

pattern [53]. Again, no changes are required on user-defined code and the contract interface 

compared with what is presented in Section 4.3.1. A primary change of architecture-prescribed 

code is that multiple classes are generated, with each class corresponding to a specific state of 

the diagram. A class named xxxArch is also created as presented earlier, where all the structure 

information of the component (e.g. references to other connected components, provided 

interfaces, etc.) is implemented, serving as a container that the state classes reference to. Figure 

4-11 shows the basic structure of the architecture-prescribed code of Controller, whose state 

changes are defined in Figure 4-10. 
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Specifically, three kinds of classes are generated. ControllerArch maintains a state 

variable that represents the current state of the component, and provides a setState method to 

change the current state. The operations in ControllerArch then redirect requests to the current 

state since they may but need not be implemented differently in different states. Note that only a 

portion of ControllerArch is shown in the figure, while the remainder (e.g. the reference to user-

defined code) is as defined in Section 4.3.1. ControllerState is the abstract class that defines the 

behavior that a particular state of the component must have. ControllerWaitForInputState and 

the other three classes next to it are subclasses of ControllerState. Each implements a specific 

state. Operations in these subclasses are implemented by (1) calling the associated action if there 

is one defined in the state diagram; (2) calling the same operation in user-defined code where 

state-independent activities (e.g. system logging) may be specified; (3) identifying the successor 

state in case a state transition is triggered. 

Figure 4-11: Structure of the architecture-prescribed code generated from a state diagram. 
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List 4-5 further illustrates the generated code from a state diagram by showing a portion 

of ControllerArch’s code that directly comes from the diagram. As can be seen, a list of variables 

(line 5 - 8) is explicitly maintained in the generated class to represent all the possible states that 

the component may get into. A variable state is also created, maintaining the current state of the 

component. In addition to initializing user-defined code as presented in Section 4.3.1, the 

constructor method (lines 11 - 18) now also needs to initialize state variables and set the initial 

state based on what is defined in the state diagram. A special method called setState (lines 20 - 

22) is generated for the purpose of changing the current state. Finally, all the provided operations 

(e.g. enterOperator shown in line 24) of the architecture-prescribed code are now implemented 

by redirecting requests to the current state, which could be ControllerWaitForInput, 

ControllerWaitForNumber, ControllerWaitForOperator, or ControllerEnteringNumber. 

Corresponding operations are implemented in these classes just as shown in Figure 4-11. 

01: class ControllerArch implements IController{ 
02: 
03:  … //References to user-defined code, other components. 
04: 
05:  ControllerState ControllerWaitForInput; 
06:  ControllerState ControllerWaitForNumber; 
07:  ControllerState ControllerWaitForOperator; 
08:  ControllerState ControllerEnteringNumber; 
09:  ControllerState state = null; 
10: 
11:  public void ControllerArch(){ 
12:   … // Initialization of user-defined code 
13:   ControllerWaitForInput = new ControllerWaitForInputState(this); 
14:   ControllerWaitForNumber = new ControllerWaitForNumberState(this); 
15:   ControllerWaitForOperator = new ControllerWaitForOperatorState(this); 
16:   ControllerEnteringNumber = new ControllerEnteringNumberState(this); 
17:   setState(ControllerWaitForInput); // Set the initial state 
18:  } 
19: 
20:  public void setState(ControllerState newState){ 
21:   state = newState; 
22:  } 
23: 
24:  public void enterOperator(String opcode){ 
25:   state. enterOperator(opcode);  // Redirect to current state. 
26:  } 
27: 
28:  …//The implementation of other operations 
29: } 
 
List 4-5: Generated code of ControllerArch. 
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4.6 Revisiting Architecture-Implementation Mapping 

As presented in Section 1.3, the hypothesis of this study is that 1.x-way mapping supports 

architecture-centric development, can be applied in the development of a realistic system to 

prevent its architecture-prescribed code from being manually changed by programmers, and 

supports automatic mapping of structural and behavioral architecture changes to code. In this 

section, we explore the hypothesis by comparing 1.x-way mapping with the existing architecture-

implementation mapping approaches described in Chapter 2. Significantly, we present a 

framework consisting of a set of important criteria, which form a perspective for evaluating a 

specific architecture-implementation mapping approach. The purpose is to highlight how our 

approach contributes to architecture-implementation conformance. Meanwhile, some remaining 

challenges are also identified, making the scope of this research study clearer. 

Table 4-1 compares architecture-implementation mapping approaches. The approaches are 

organized into three categories, one-way mapping, two-way mapping, and 1.x-way mapping. The 

comparison is made along eight dimensions: 

• Architecture model highlights the type of architecture information that can be mapped 

to or from the code;  

• Generated code depicts the form of architecture-prescribed code that is generated;  

• Architecture configuration changes, Architecture component changes, and 

Architecture behavioral changes describe how corresponding changes are mapped 

from the architecture to the code; 

•  Changes of Architecture-Prescribed Code and Changes of Implementation Details 

represent two kinds of changes that are initiated by programmers, and may break the 

architecture-implementation conformance. 
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  One-way mapping Two-way mapping 1.x-way mapping 

 
Architecture 

model 

Structure, behaviors, 

non-functional 

properties. 

Structure only. 

Structure, executions of 

significance. 

 Generated code Complete program. 

Code fragments and 

skeletons that are to be filled 

with details by developers. 

An independent program 

element (for each 

component) that cannot be 

manually modified. 

A
rc

hi
te

ct
 in

iti
at

ed
 

Architecture 

link changes 

Completely regenerate 

the code regardless of 

what is changed in the 

architecture. 

Corresponding code is 

automatically updated to 

reflect link changes. 

Automatically mapped to 

the code by regenerating 

the bootstrapping 

program. 

Architecture 

component 

changes 

Regenerate code for the 

changed part of the 

component. Unrelated code 

remains (e.g. with EMF’s 

JMerge). Change 

notification is not supported. 

Completely regenerate 

code for the changed 

components, and send 

change notifications if the 

user-defined code needs to 

be updated. 

Architecture 

behavior 

changes 

Cannot be mapped to the 

code through code 

regeneration. Have to be 

done manually. 

Completely regenerate 

code for the changed 

components, and send 

change notifications if the 

user-defined code needs to 

be updated. 

Pr
og

ra
m

m
er

 in
iti

at
ed

 

Changes of 

architecture-

prescribed code Manual changes are 

not allowed in the 

code. 

Mapped to the architecture 

through reverse engineering 

or roundtrip engineering, 

both of which are of high 

complexity level. 

Manual changes of 

architecture-prescribed 

code by programmers are 

not allowed. 

Changes of 

implementation 

details 

Rely on the discipline or 

program compiler to avoid 

new negative properties. 

Programmer-induced 

negative properties may be 

avoided with additional 

tools built as discussed in 

Section 4.4.4. 

 

Table 4-1: A comparison of architecture-implementation mapping approaches. 



www.manaraa.com

100 
 

The table indicates how these potential problems can be handled. As presented in the 

table, 1.x-way mapping has the following advantages over existing one-way mapping and two-

way mapping approaches. 

• More practical with current modeling and code generation technologies. The models 

supported by 1.x-way mapping capture system structure and some executions of 

significance (i.e. behaviors). Correspondingly, generated code is architecture-

prescribed, separated from user-defined code via the deep separation mechanism. 

This is more practical compared with complete modeling and full code generation of 

one-way mapping. In contrast, most two-way mapping approaches currently can only 

(partially) support the mapping of structural architecture to the code. In practice, its 

generated code is often mixed with user-defined implementation details, given the 

limitations of current code separation mechanisms. 1.x-way mapping’s position in the 

middle represents an advantageous level of modeling at this point in the evolution of 

software development technology. We believe it mixes just the right amount of 

modeling with programming to maximize the effectiveness of both. Moreover, 1.x-

way mapping can be easily extended to support additional models with the 

development of corresponding technologies. 

• A solution to architecture changes. 1.x-way mapping explicitly records and classifies 

architecture changes in an architecture change model, analyzes and refines recorded 

changes, and maps different kinds of architecture changes in specific ways. None of 

these features is supported by either one-way mapping or two-way mapping. Instead, 

all the existing approaches treat architecture changes simply as ordinary artifact 

changes and map them to code through complete code regeneration or incremental 
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changes mentioned earlier. This is obviously insufficient given that different 

architecture changes may have different impacts on the source code, and some 

changes combined together may not even affect the code at all. 

• Regulation of code changes. As discussed in this chapter, programmers’ manual 

changes to the code can invalidate the architecture by changing architecture-

prescribed code, inducing new negative properties, or voiding certain architecture 

specifications by not making use of it. Of these different changes, 1.x-way mapping 

can prevent mistaken changes of architecture-prescribed code by programmers. With 

additional tools, 1.x-way mapping could also resolve the last two challenges as 

discussed earlier in Section 4.4.4. This is our future work. Two-way mapping 

approaches to certain extent can also prevent architecture-prescribed code from 

manual modifications. Some of them (e.g. ArchJava) can even guarantee that no new 

negative properties are induced in the code with the help of programming rules and 

compliers. 

• Support for behavioral mapping. All the change management features described 

above can be applied to both structural and behavioral architecture in 1.x-way 

mapping. This represents another dimension along which our approach advances 

current technology. This is based on two important insights: (1) only executions of 

significance should be captured in behavioral architecture specification; (2) the 

application of deep separation. The first insight alleviates the challenge of complete 

modeling that one-way mapping faces. The second insight addresses the difficulties 

of clearly separating generated behavioral code from user-defined code that most 

two-way mapping approaches face. As discussed earlier, deep separation actually 
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reflects the spirit of code library and virtual machine. From this perspective, 

behavioral architecture can be implemented just as part of the architecture-prescribed 

code that is generated upon a set of low-level operations provided by programmers. 

Finally, 1.x-way mapping also has a number of limitations. Some of these limitations are 

shared by all the existing architecture-implementation mapping approaches, such as not being 

able to support the mapping of non-functional properties (e.g. security, reliability, etc.) and 

system dynamics that are modeled using some expressive formal methods (e.g. some types of 

process algebra). Some other limitations, however, are specific to the design of 1.x-way 

mapping. First of all, 1.x-way mapping induces one more layer of indirection in the 

implementation of each architecture component. This may not noticeably affect the system 

performance given current computational power, but it brings additional challenges when it goes 

to system integration. In addition, our current investigation of 1.x-way mapping has focused on 

centralized applications written in object-oriented languages. It remains to be seen how other 

programming paradigms (e.g. functional programming) and applications where the separated 

code may be run on different machines can be supported.   
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5 Implementation 

1.x-way architecture-implementation mapping is implemented as a tool named xMapper in 

ArchStudio 4, a tool integration environment that is fully integrated within the Eclipse platform as 

a plug-in project. This chapter begins with an introduction of the implementation environment, 

Eclipse and ArchStudio 4. After that important implementation tasks and some challenges are 

specifically discussed, including architecture change recording, code generation, and change 

notifications. An application scenario is then presented to illustrate how xMapper may be used in 

practice to maintain architecture-implementation conformance. Finally, reflections and lessons 

learned from the implementation experience are summarized at the end of the chapter. 

5.1 Implementation Environment 

As described in Section 4.2, 1.x-way mapping runs in an integrated software development 

environment (IDE) so that tools used for creating and managing the system at different abstraction 

levels are able to communicate with each other and share information. A typical example of such 

an environment is Eclipse, or particularly ArchStudio 4, where the development activities of 

architecting and programming for an application co-exist. Another advantage of implementing our 

approach in such an environment is that the developed tool can be potentially distributed and 

deployed with the integration environment. This section provides an overview of Eclipse and 

ArchStudio 4, with the focus on their features (e.g. Eclipse’s JET code generation engine) that are 

used in the implementation work. 
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5.1.1 Eclipse	
  

Eclipse is an open development platform comprised of extensible frameworks, tools, and 

runtimes for building, deploying, and managing software across the lifecycle. The Eclipse 

platform is designed to provide tool providers with mechanisms to use and rules to follow, that 

lead to seamlessly-integrated tools. Typical examples of these Eclipse-based tools include Eclipse 

Java development tools (JDT) for Java, Eclipse Modeling Framework, the JUnit testing 

framework, and our ArchStudio 4 architecture development environment that is introduced later 

in this section. An important concept of Eclipse is plug-in, which is the smallest unit of Eclipse 

platform function that can be developed and delivered separately [23]. A small tool is written as a 

single plug-in, whereas a complex tool may have its functionality split across several plug-ins. 

Each Eclipse plug-in contributes to the whole in a structured manner, may rely on services 

provided by another plug-in, and each in turn may provide services on which yet other plug-ins 

may rely. Specifically, each plug-in has a manifest file declaring its interconnections to other 

plug-ins. The interconnection model is simple: a plug-in declares any number of named extension 

points, and any number of extensions to one or more extension points in other plug-ins. A primary 

advantage of this plug-in mechanism is that each specific plug-in can be more readily reused to 

build applications not envisioned by the original developers of the plug-in. It represents an 

important extension mechanism of Eclipse. This is an important reason that many people think 

“the Eclipse platform is an IDE for anything, and for nothing in particular”. 

Even the Eclipse platform itself is portioned by the plug-in mechanism. Figure 5-1 shows 

the major components, and APIs, of the Eclipse platform. The kernel (runtime system) is based on 

Equinox, an implementation of OSGI framework [62]. All basic functionalities are plug-ins built 

on top of the kernel, including the Eclipse workbench and workspace. 
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Figure 5-1: The architecture of the Eclipse platform [23]. 
 

All the components except Platform Kernel shown in the figure are integrated into Eclipse 

in the form of plug-ins. Even a portion of the Eclipse kernel or runtime is implemented as plug-

ins. Generally speaking, Workbench provides both UI and non-UI behavior specific to the Eclipse 

IDE itself, such as projects, project natures, editors, views, and actions. Workspace plug-ins 

display and store user files as projects, source code, and so on. Team is a group of plug-ins 

providing services for integrating different types of source code control management systems (e.g. 

Subversion) into the IDE. Help plug-ins provide documentation for the Eclipse IDE. Finally, JDT 

and PDE plug-ins are usually shipped with the Eclipse platform to support development of Java 

programs and user-defined Eclipse plug-ins. 
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Eclipse Java Emitter Templates (JET) [44] is a template-based code generation engine that 

was built on the Eclipse platform. The original version of JET (JET1) is part of the Eclipse 

Modeling Framework (EMF), while the new version of JET (JET2) includes a number of new 

features and moved to the Eclipse Model To Text (M2T) project. JET2 operates in the context of 

Eclipse, and itself is an Eclipse plug-in. It is used in the implementation of the 1.x-way mapping 

approach to build a code generator as introduced later in next section. 

The JET code generation engine loads an XML document that contains code generation 

parameters, follows user-defined JET templates that consist of both target text (source code in this 

case) and control tags, and finally generates source code. The generated code could be Java, C, or 

even some non-executable documents, depending on what is defined in the templates. In 

particular, Eclipse JET2 supports loading XML documents, and navigating them using XPath 

expressions [152]. This facilitates the implementation of 1.x-way mapping since the xADL 

architecture description is XML. 

JET2 also provides standard JET tag libraries that make it possible to create relatively 

readable templates (compared with templates of JET1 that are embedded with Java scriptlets). 

Examples of these tags include <c:choose> (conditionally dumping text depending on the value), 

<c:get> (writing out the result of an XPath expression), and so on. These tags are used in JET 

templates to control the code generation process. In addition, JET can be extended with user-

defined tag libraries. This is useful when the standard tag library cannot meet certain code 

generation needs. Finally, JET2 can read .java files and access the information in JET templates. 

This is a useful feature for our implementation, considering that some java interface files need to 

be loaded to generate corresponding methods that are specified in the interface files. 
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5.1.2 ArchStudio	
  4	
  

ArchStudio 4 is an architecture development environment integrated within the Eclipse 

platform as a plug-in project. It supports developing, visualizing, and analyzing architecture 

models using the xADL language introduced in Section 3.1.2.  ArchStudio 4 follows the Myx 

architecture style and is built upon the myx.fw framework described in Section 2.2.2. Users can 

extend xADL with new features, and automatically generate libraries used for those new features. 

This makes ArchStudio an ideal platform for investigating new architectural approaches and 

research directions. In addition, ArchStudio has been used in several companies and universities. 

However, ArchStudio did not have an automated architecture-implementation mapping tool 

before xMapper - the 1.x-way mapping tool was developed. With xMapper built and integrated, 

ArchStudio is now upgraded in terms of support for architecture-centric development. 

Similar to Eclipse, extensibility is an important feature of ArchStudio in the sense that 

new tools can be relatively easily built and integrated into the ArchStudio environment. On the 

one hand, ArchStudio has provided a number of ancillary tools, such as Archipelago, ArchEdit, 

AIM Launcher, and TypeWrangler. These tools support some essential activities of architecture-

centric development, and can be extended to address new architecture concerns. For example, 

modeling a new architecture concern can be done by adding a new xADL schema, followed by 

development of Archipelago plug-ins to add visualization support for the schema. On the other 

hand, new tools that are independent of the tools mentioned above can also be built and integrated 

with ArchStudio for the purpose of some other development activities, such as software 

traceability, product line architectures, and the architecture-implementation mapping focused in 

this study. Again, this process includes the activities of developing new xADL schemas and 

specific tools to explore new features. 
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Archipelago is ArchStudio’s graphical editor that provides a symbolic point-and-click 

boxes-and-arrows editing interface. The current version of Archipelago is focused on structural 

architecture modeling. It supports the action of adding/removing architecture components, 

interfaces, and links. With regarding to behavioral modeling, only a basic statechart editor was 

built in Archipelago with many essential features missing, such as identification of a triggering 

event for a transition. Sequence diagrams, necessary for this study, were not supported in 

Archipelago. As described earlier in this section, this problem can be solved based on the 

extensibility support of Archipelago, and particularly its BNA framework. 

Central to Archipelago is a framework called BNA (Boxes N Arrows), which resembles 

other graphical editing frameworks such as GEF and JGraph. BNA consists of a number of basic 

elements, including Things, ThingPeer, BNA Model, BNA Logics, and so on. These elements 

encapsulate low-level details that control things like how a specific architecture element (e.g. 

component) is rendered and displayed, and also provide APIs for the overlying application to 

customize the display of architecture to satisfy their special needs. This to a great extent facilitates 

modeling of new architecture elements. In particular, the BNA framework also follows a modular 

design, and can be easily extended to address new modeling concerns. For example, the 

information of each modeling element and its displaying characteristics are separated into two 

independent elements (BNA Thing and ThingPeer) in BNA. 

ArchEdit is another useful tool of ArchStudio that provides a graphical user interface to 

syntactically edit software architecture specifications. ArchEdit depicts an architecture description 

graphically in a tree format, where each node can be expanded, collapsed, and edited like many 

XML editors. Significantly, the ArchEdit tree is automatically populated from the underlying 
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xADL schemas. It does not have to be changed to provide support for new schemas. This makes 

ArchEdit a free low-level graphical editor for users who define new xADL schemas.  

5.2 Implementation Tasks 

This section specifically introduces the implementation of 1.x-way mapping. It starts with 

an explanation of how ArchStudio 4 is extended to support sequence diagram and structure 

diagram modeling. As discussed in Section 4.5, this is a task that is not inherent to 1.x-way 

mapping, but it is necessary for us to further explore the claimed capabilities of 1.x-way mapping. 

The implementation of 1.x-way mapping itself consists of four specific tasks: (1) recording 

architecture changes; (2) analyzing and refining changes; (3) building a code generator; (4) 

sending change notifications. Task (1) is implemented by adding recording logics to an existing 

ArchStudio tool, Archipelago. It is relatively independent of Task (2), (3), and (4), which together 

form Mapping Tool shown in Figure 4-1. They communicate through production and 

consumption of the constructed architecture change model. The implementation of each task is 

presented in the following sections. 

5.2.1 State	
  Diagram	
  Editor	
  and	
  Sequence	
  Diagram	
  Editor	
  

A sequence diagram editor and a state diagram editor are built into the Archipelago 

modeling environment as part of our implementation work. Based on them, users can create and 

manipulate the adapted sequence diagrams and state diagrams described in Section 4.5. 

Corresponding implementation work includes the creation of new xADL schemas and 

development of the modeling interface on the basis of the BNA framework. During this process, 

we closely followed the provided tutorials of xADL and ArchStudio. Figure 5-2 and Figure 5-3 

below show screenshots of the developed diagram editors. 



www.manaraa.com

110 
 

Figure 5-2: A screenshot of the state diagram editor.  
 

As shown in the figure above, the developed state diagram editor supports the creation of 

states, transitions, and identification of triggering event for a specific transition. The black dot 

represents the initial state of the diagram. What is not shown in the figure is how a state diagram 

can be associated with a specific architecture component. This is done through an explicit 

selection of the corresponding component in a pop-up list when creating a state diagram. The 

underlying xADL description of a state diagram is not shown here due to its lengthy details and 

the focus of this study. In short, each state diagram is modeled as a statechart element in the 

xADL description. It consists a number of child elements, including description, linkedComp, 

state, and transition. For the elements of state and transition, there can be more than one and each 

contains further details about corresponding elements, such as state type (initial, normal, final), 

triggering event, and target state. 
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Figure 5-3: A screenshot of the sequence diagram editor. 
 

Figure 5-3 is a screenshot of the developed sequence diagram editor in Archipelago. The 

text box at the top of the figure represents the operation that is depicted by the diagram. It is 

specified at the beginning of creating a sequence diagram. The captured context menu lists several 

things that can be done in a sequence diagram editor, such as adding a new participant, adding a 

new message, and so on. The editor also facilitates selecting an interaction message. After the 

corresponding menu item is selected, a small selection window pops up, containing all the 

interfaces of the host component (the component whose operation is defined by the diagram). For 

each of the shown interfaces, a list of specific methods is shown. In this way, the user can select a 

corresponding method of the interface that is connected to the target participant component, and 

the signature of the selected method will automatically become the label of that interaction 

message. This reduces the amount of code that the user has to write, and also serves as a guide for 

the creation of a message. 
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A difficult issue in the implementation of both the state diagram editor and the sequence 

diagram editor described above is the xADL-BNA mapping. Specifically, there must be a way to 

update a particular part of the diagram (e.g., a component) based on a part of a xADL document.  

When that part of the xADL document changes, the corresponding symbol should be 

automatically updated to reflect the changes in the xADL document.  In other words, all changes 

made to the xADL model should cause the corresponding update in the diagram. Generally 

speaking, this is a problem of maintaining the model-view synchronization that pervades in the 

development of all graphical editors. 

In Archipelago, a BNA-based editor, the synchronization of the xADL and the BNA 

model is automatically monitored and handled by a class implemented in the BNA framework, 

AbstractAutomapSingleAssemblyXArchRelativePathMappingLogic. To support new modeling 

capabilities such as the editors of sequence diagrams and state diagrams, all one need do is just 

create specific logics that extend the above class with some customization code. Examples of 

these new logics that were created in our implementation include MapXadlTransitionLogic, 

MapXadlStateLogic, and MapXadlParticipantLogic. This special design keeps things simple and 

efficient, and represents another benefits of Archipelago and its BNA framework. 

Note that the implementation of both the state diagram editor and the sequence diagram 

editor is not part of the architecture-implementation mapping work. We developed them simply 

because there were no corresponding editors in Archipelago when we started this research work. 

The introduction presented in this section highlights some special features of the developed 

editors. These editors provide us an application context, based on which we can further develop 

our architecture-implementation mapping tool – xMapper. 
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5.2.2 Recording	
  Architecture	
  Changes	
  

The recording of architecture changes is integrated into Archipelago, which provides a 

graphical architecture-editing interface. It supports the action of adding/removing architectural 

components, interfaces, and links. In order to record changes made to an architecture, the xADL 

schema must be extended to specify changes in the architecture description. Based on that, 

specific recording logics are built in Archipelago. Figure 5-4 shows the recorded changes after a 

series of modifications to an architecture. What is also shown in the figure is a screenshot of the 

Archipelago structural modeling environment and how a map-to-code process is started. 

As can be seen, a new element <archChange> is added to the root (<xArch>) of the 

architecture description, which used to contain the <archStructure> element only for architecture 

structure information. Under the new element, there are multiple <changes> elements (annotated 

with their starting time in the figure), each of which represents a change session that includes a 

series of specific changes. The status of each change session is either “mapped” or “unmapped”, 

depending on whether the map-to-code process is done on the session or not. A new “unmapped” 

session will be created automatically if the architecture is modified, and no “unmapped” change 

session exists. This represents an implicit change session management. 

In contrast, an alternative way is to allow the architect to create a new change session 

explicitly, even if there is already an “unmapped” change session. By this means, parallel change 

sessions are enabled. They could be changes that modify different portions of the architecture, 

for different purposes, and be mapped to the code independently. Users are allowed to switch 

among different change sessions (e.g. for different tasks), so that the changes they made to the 

architecture are recorded into the corresponding change session. Another possible application is 

to visualize the changes of each change session. For example, select a change session on the left 
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panel of Archipelago, and changes in that session will be highlighted in the architecture in the 

right panel of Archipelago. We believe there are some specific issues to be addressed, such as the 

relationships (e.g. mutual exclusion, dependency) between concurrent change sessions. What 

should be noted here is that it is actually the architecture-based code regeneration mechanism 

presented above that makes parallel change sessions a possibility. 

 

Figure 5-4: Architecture change recording in the Archipelago modeling environment. 
 

A tricky issue in architecture change recording is how to deal with removal of 

architecture elements. Recording the removal action itself is not a challenge, but the problem is 

that we often need the information (name, attributes, …) of the removed element during the map-

to-code process, such as generation of change notifications. With the current design of 

Archipelago, the element will be removed permanently from the architecture once that removal 

action is triggered and saved.  
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A possible solution is to change the logic of Archipelago: mark the element as something 

like “toBeRemoved”, and remove it after the changes are successfully mapped to the code. This 

solves the problem, but it requires unwanted modifications to Archipelago’s existing logic. Our 

solution is to create a complete copy of the removed element in the architecture change model, 

so that Archipelago can remove the original element as before. The copy is used for information 

retrieval during code mapping, and is removed after the process is successfully done. Again, this 

special design reflects another advantage of explicit modeling of architecture changes. 

With respect to the logics of recording architecture changes, the Archipelago architecture 

editor works in two modes: recording and normal. When the editor is entered or re-entered (e.g. 

by double-clicking a node in the left panel of Archipelago), the system will check if there is any 

“unmapped” change session in the xADL document. If an “unmapped” session exists, the editor 

will load the change session ID into an environment variable (e.g. sessionID) and automatically 

enter the recording mode – all the changes made afterwards will be recorded into the loaded 

change session and the “Map Changes To Code” menu item shown in Figure 5-4 is enabled. 

Otherwise the editor is in the normal mode: the sessionID variable will be set to null and the 

map-to-code menu item is disabled.  

Once the editor is entered, there are two kinds of actions that can trigger the mode 

transition: making changes to the architecture and starting the map-to-code process. The former 

makes the editor enter the recording state. Note that this may include the creation of a new 

change session and the action of setting the sessionID variable if the editor is originally in the 

normal mode. In contrast, the latter simply changes the mode from recording to normal and 

clears the sessionID variable. 
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5.2.3 Change	
  Analysis	
  and	
  Refinement	
  

The architecture change model only records “raw” changes. In other words, it simply 

reflects what has been done to the architecture, and is relatively independent of how the changes 

are mapped to the code. In particular, some recorded changes may not be of interest to the map-

to-code process at all. For example, consider the following scenario. The architect created a new 

component, worked on it a little bit, but somehow found this component not necessary and 

removed it. All these actions are recorded into the change model. However, as far as their impact 

on the code is concerned, nothing should be done during code mapping, assuming no other 

components made a reference to this component. This example highlights another important step 

in the implementation of 1.x-way mapping: analysis and refinement of recorded architecture 

changes. 

As mentioned earlier in this section, the map-to-code process is performed per change 

session. Each item (e.g. addComponent) in the change session that is being processed will go 

through a specially designed filtering logic. The result of running this filtering logic on a change 

session are so-called “refined” changes that consist of a set of discrete change sets: 

addedComponent (components that were added in this change session), updatedComponent 

(components that were updated in this change session), and removedComponent. In particular, 

the intersection of these change sets is guaranteed to be null. This ensures that each changed 

architecture element be mapped to code in an unambiguous way. 

List 5-1 shows the filtering logic of change analysis and refinement in 1.x-way mapping. 

It codifies a set of rules that define under what condition a specific change item should be 

discarded or merged with a previous change item. For example, one filtering rule specifies that 

whenever a removeX (e.g. removeComponent) change item comes in, the set of addedX should 



www.manaraa.com

117 
 

be checked first. If the entity to be removed exists, the corresponding entry in the addedX set 

should be removed and the removeX change item is discarded. Otherwise the set of updatedX is 

checked. Again if the entity to be removed exists, the corresponding entry in the updatedX set 

should be removed and the removeX change item is added to the removedX set. Finally, if neither 

of the above is true, add the entity associated with removeX to the removedX set. In this way, the 

scenario discussed above can be successfully addressed, all the changes will be discarded in the 

end, and the code remains. 

// X below represents a changed architecture element 
for each addX change   
  add X to AddedElements 
 
for each removeX change   
  if (X is in AddedElements)     
    remove X from AddedElements   
  else if (X is in UpdatedElements)     
         remove X from UpdatedElements     
         add X to removedElements   
       else 
         add X to removedElements 
 
for each updateX change   
  if (X is in AddedElements)     
    discard updateX   
  else     
    add X to updatedElements 
 
List 5-1: The filtering logic of change analysis. 
 

The filtering logic illustrated above is based on the assumption that all the changes in an 

architecture change session are recorded and processed in the order of occurrence. In other 

words, an addX change item should always be recorded and processed before either updateX or 

removeX of the same architecture element. This is guaranteed by the implementation of our 

architecture recording and map-to-code process. It also explains a portion of the above filtering 

logic. For example, an addX item can be simply processed by adding X into the addedX set 

without checking either updatedX or removedX since there is no way that X could be updated or 

removed before it is added under the current design. 
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Finally, note that the filtering logic presented above represents a basic exploration 

towards this direction. It can be extended or customized with more advanced logics to satisfy 

some special needs. For example, a new filtering logic may be created to specify that only 

changes to a specific architecture element is considered and all other changes should be 

discarded. Or only the changes made by a specific person are processed and mapped to code. All 

these advanced logics can be developed based on our architecture change model, and this 

highlights a possible extension of 1.x-way mapping. For now, the filtering logic in List 5-1 is 

sufficient for us to explore change management and support for behavioral mapping, which is the 

focus of this study. 

5.2.4 Code	
  Generation	
  

1.x-way mapping updates architecture-prescribed code through code regeneration. In 

particular, code that is regenerated is proportional to the architecture elements that are changed. 

For link changes mentioned above, 1.x-way mapping regenerates code that is responsible for 

bootstrapping the program with the connection information. For component changes, in contrast, 

only the code of the corresponding component is regenerated. The code generator of xMapper is 

built upon on the JET2 (Java Emitter Templates) technology of the Eclipse Modeling Project. As 

mentioned earlier, JET2 operates in the context of Eclipse, and itself is an Eclipse plug-in. JET2 

supports loading XML documents, and navigating them using XPath expressions. This facilitates 

the implementation of 1.x-way mapping since the xADL architecture description is XML. JET2 

also provides standard JET tag libraries that make it possible to create relatively readable 

templates. 

Figure 5-5 shows an overview of the code generation process. In general, a JET code 

generator only requires three inputs: a complied JET Template, XML input (the xADL 
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architecture specification in our case), and Configuration Variables. An additional input, Refined 

Architecture Changes, is used here to enable architecture-based code regeneration, which 

ensures that it only regenerates code for modified components. Architecture Model and 

Configuration Variables provide required parameters for code generation. 

Figure 5-5: Code generation in 1.x-way mapping. 
 

In particular, a configuration panel of code generation is developed as shown in Figure 5-

6. It collects Configuration Variables as shown in Figure 5-5 and provides an opportunity for the 

user to tune the code generation process by changing specific parameters, such as the name of 

generated classes. The panel is preloaded with values retrieved from the architecture description. 

After code generation is done, user entered values will be written back to the architecture to 

update corresponding parameters. In this way, a simple record-and-replay is enabled, as is the 

creation of traceability links between the architecture and generated code. The panel also allows 

the user to manually edit generated change notifications, and this is discussed in next section. 
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Note that more parameters can be changed through the configuration panel as long as there is a 

way to load and write corresponding information from and to the architecture. Shown here is an 

illustration of how this can be done. It is by no means to be complete. Generally, the more 

parameters that can be changed, the more flexible the code generation process is, and the more 

variations can be addressed during code generation. 

 

Figure 5-6: A configuration panel that tunes the mapping process. 
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The JET Template in Figure 5-5 codifies specific code generation rules. It defines how a 

generated variable or class should be named and manipulated by default. Significantly, it 

enforces the deep separation mechanism in the generated code as described earlier in Chapter 4. 

Different strategies are taken to generate code for architecture elements that are structural only 

versus those that are linked to a behavioral diagram, as discussed in Section 4.5.2. Linking 

structural and behavioral architecture definitions is not a challenge in general based on the XML 

technology. It is somewhat difficult, however, to associate an operation in a Java interface file 

with a sequence diagram so that code can be generated from the corresponding sequence diagram 

for this operation. Our solution is to add a Javadoc @see tag to an operation in the Java file when 

a sequence diagram is defined for it, as exemplified in List 5-2 below. The tag serves as a link to 

the corresponding diagram by which the code generator loads information and generates code. 

01: /** 
02:  * @see interactionffea0a1b-0c463028 
03:  */ 
04: public void execute(String opcode); 
 
List 5-2: Annotating the method defined by a sequence diagram. 

 

Specifically, a number of JET templates were developed in our implementation, 

including main.jet, comparch.jet, icomp.jet, compimp.jet, comparch_sc.jet, abstract_st.jet, and 

concrete_st.jet. The last three templates were specifically for state diagram based code 

generation. Each of these templates is briefly introduced below: 

• main.jet. This is the entry point when the code generation begins. The template 

specifies some general information, such as where to dump the generated code and 

which template to use for a specific architecture element.  
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• comparch.jet. This is the template with which to generate the architecture-prescribed 

(mostly structural) code of a component. For components that contain the operation 

defined by a sequence diagram, the operation is generated as described in Chapter 4. 

• icomp.jet. This template generates the interface between the architecture-prescribed 

and user-defined code of a component. Basically, it contains a list of specific 

operations that architecture-prescribed code expects user-defined code to provide. 

• compimp.jet. This is the template for user-defined code. Note that the generated code 

is just to provide a starting point for the programmer to work with, and may be 

manually changed by the programmer. 

• comparch_sc.jet, abstract_st.jet, and concrete_sc.jet. These templates control the 

generation of architecture-prescribe code for state diagrams. Recall what is shown in 

Figure 4-11, comparch_sc.jet is the template for the architecture-prescribed code that 

provides a container; abstract_st.jet is the template for abstract state; concrete_sc.jet 

is the template for concrete state. For the user-defined code of state diagrams, it 

simply reuses the compimp.jet template described above. 

5.2.5 Sending	
  Change	
  Notifications	
  

The architecture change notification of 1.x-way mapping is built upon the Eclipse 

Markers technology [23], which is used in Eclipse to annotate specific locations within a 

resource. For example, the Eclipse Java compiler not only produces class files from source files, 

but also annotates the source files by adding markers to indicate compilation errors. Eclipse 

markers provide a mechanism that automates the delivery and display of notifications in user-

defined code. 1.x-way mapping generates notifications based on refined changes and architecture 

information. In particular, the architect is able to review and edit generated notifications through 
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the configuration panel mentioned above. This is to support scenarios where additional 

information, such as the rationale of a specific change, need to be provided to programmers 

[130]. 

Figure 5-7 shows an example of generated notifications and how they are displayed. 

Clicking any of these messages will lead the user to the corresponding source code. All the 

messages are automatically generated except the one highlighted, which was manually edited by 

the architect in the configuration panel shown in Figure 5-6. In addition, note that information 

(e.g. the name of removed interface) of the message “Interface out was removed …” is actually 

from the copy created in the architecture change model, as discussed previously in this section. 

Figure 5-7: An example of architecture change notifications. 
 

There are two choices regarding the persistence of these notifications. We can make them 

either shown-and-disappear or persistent, depending on how important the corresponding 

notification is. Notifications of the former type will be gone automatically once the programmer 

read them, while notifications of the latter type must be manually removed by the programmer. 

Thanks to the Eclipse Markers technology, this customization can be easily done with 

corresponding parameters specified. Another possible way of extending the notification 

mechanism is to assign a priority level to each specific architecture change notification. For 

example, we can assign high priority level to those notifications that the architect wants the 

programmer to react to instantly, such as the implementation of a required component interface. 

In this way, a better communication between the architecture and the programmer is enabled.  
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5.3 Tool Usage 

The developed xMapper tool helps maintain architecture-implementation conformance in 

architecture-centric software development, where software architecture plays a central role and 

drives development activities like software synthesis, evolution, and integration. Architecture-

centric development requires that all architecture-related changes should start from the 

architecture, and be mapped to code afterwards. Traditionally, however, this only works under 

the assumption that programmers are highly disciplined since an automated tool that could 

enforce and facilitate this development process has not been fully available yet. Below we 

present a scenario to illustrate how xMapper can be used by both architect and programmer in 

the context of architecture-centric software development to overcome this previous shortcoming. 

Architect. Mike works for a software project as an architect. He develops an architecture 

model in ArchStudio using the xADL language. After Mike finishes his work, he right clicks the 

mouse and selects “Map Architecture To Code” in the pop up menu. At that point, the code 

generation engine of xMapper is invoked and starts to generate architecture-prescribed code for 

every component. Meanwhile, a Java interface file is also generated for each component. It 

consists of the low-level operations (or primitive operations as mentioned earlier) that the 

architecture-prescribed code of a component expects its user-defined code to provide. The 

generated interface file is then passed to a corresponding programmer to implement. 

Mike puts the generated architecture-prescribed code under the protection of a 

configuration management system (e.g. Subversion), so that the code can only be updated by him 

through the next round of code generation. After a while, Mike decides to make some changes to 

the architecture, either to address a requirement change or for optimization. Once he starts to do 

that in the ArchStudio modeling environment, a new “unmapped” change session is 
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automatically created in the architecture change model and all the following changes are 

recorded and classified in it. Without having to worry about implementation details, Mike makes 

all the architecture changes and simply selects “Map Changes to Code” to get the corresponding 

code updated. Alternatively, he can also select “Map Changes To Code With Dialog” if he wants 

to change some default code generation parameters or review and edit generated notifications. As 

a result, the architecture-prescribed code of changed components is regenerated, necessary 

notifications are sent to the programmer(s) of the user-defined code, and the change session is 

closed with its status updated to “mapped”. 

Mike may also want to capture some system dynamics or executions of significance in 

his architecture. It is important in architecture-centric development that behavioral architecture 

and its changes can be accurately mapped to code. With xMapper, both can be done in an 

automatic manner as presented above. All Mike needs to do is model system behaviors in the 

supported forms, UML-like sequence diagrams and state diagrams, and make sure that the 

developed models are consistent with each other. 

Programmer. Jack is a programmer that uses xMapper to collaborate with Mike in the 

project. He is responsible for the internal implementation of one or more components, and is 

supposed to implement low-level operations required by the corresponding architecture-

prescribed code. During this process, Jack is provided with a reference to the architecture-

prescribed code in the form of method parameters. Through this reference, Jack has access to 

services provided by other components that are connected to the component Jack is working on. 

With xMapper being used, Jack does not have to worry about whether his work contaminates the 

architecture-prescribed code or not. Jack’s code is also sustainable to architecture changes and 

code regenerations that follow since many of these changes (e.g. link changes) only require 
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regenerating architecture-prescribed code. Jack gets notifications for the architecture changes 

that may require modifications to his code (e.g. component changes). In particular, he only gets 

notifications for changes that are made to his component. In this way, Jack will not be 

overwhelmed by unrelated notifications. 

5.4 Lessons Learned 

Implementing 1.x-way mapping in Eclipse and ArchStudio provides some first-hand 

understandings about the power and limitations of these two systems. Overall, both of them 

facilitated our implementation work by offering some out-of-the-box features (e.g. Eclipse 

Markers used in our implementation of change notifications), a clean extension interface (e.g. 

Eclipse’s plug-ins), or a powerful framework based on which we could build our own tool (e.g. 

ArchStudio’s BNA framework). Some problems, however, were also discovered during this 

process. In this section, we discuss the lessons learned from our implementation work about 

these two systems. Doing so is part of our reflection upon the implementation, and also serves as 

a guide for future development on top of these systems. 

5.4.1 About	
  Eclipse	
  

As mentioned in Section 5.1.1, Eclipse has two features that play an important role in our 

implementation, its plug-in mechanism and the Eclipse JET code generation engine. Our 

experience with the former includes the application of existing plug-ins and development of our 

own Eclipse plug-ins. Our experience with JET is more comprehensive in the sense that we not 

only built a code generator on top of the JET engine, but also made extensions to it (e.g. created 

our own JET tag). The following are some reflections on this experience. 
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Eclipse is not a single monolithic program, but rather a small kernel containing a plug-in 

loader surrounded by hundreds of plug-ins. This modular design lends ArchStudio itself to 

discrete chucks of functionality that can be more readily reused to build applications not 

envisioned by Eclipse’s original developers. In our implementation, we were able to reuse a 

number of Eclipse plug-ins, which saved much effort. Some of these plug-ins were visible to us 

and were explicitly used during our implementation, such as Eclipse Markers and Eclipse JET 

code generation engine, while some other plug-ins were built-in and were used without being 

noticed, such as SWT, JFace, and so on. In addition to reusing existing plug-ins, we also 

developed two of our own, a code generator based on JET and a plug-in that extends the JET tag 

library. This also turned out to be an easy process with the help of the Eclipse wizard.  In 

particular, Eclipse’s workbench can be run in different modes: development and runtime. This 

makes it possible to test and debug plug-ins without having to stop the current Eclipse 

workbench. 

Our main concern with Eclipse plug-in infrastructure is that all Eclipse plug-ins have to 

be run in the context of Eclipse, which may sound obvious and reasonable. However, there are 

some functions that users may want to run independently as a standalone application, for 

example, to run a JET-based code generator independently. At this point, it would be nicer if 

Eclipse could expose an interface, from which their plug-ins could be called programmatically. 

In that way, Eclipse plug-ins would be able to run both inside and outside the Eclipse platform. 

From another perspective, what this implies is that making your application an Eclipse plug-in if 

and only if it is dependent on or is contributing to Eclipse development platform. 

Our experience with the Eclipse JET code generation engine was exactly as what we 

expected from an open-source project: powerful but poorly documented. The version we used 
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was JET2, a template-based code generation engine having many nice features compared with 

the old version of JET, such as accessing XML documents with Xpath expression, a tag library, 

and the capability of reading .java files. At some point, we were even able to create our own JET 

tag to extend its functionalities. In our implementation, this happened when we wanted to load a 

Java file with a fully qualified name that was located in a different project from the project where 

the code generator was run. By default, JET2 can only load Java files in the same project. 

However, users can easily add new functionalities by creating their own tags, just as we did. This 

is an important feature of JET2. 

The problem with JET2 primarily comes from its documentation. All the information we 

could get about JET2 is from its website, which maintains a JET Wiki and several user 

experience articles [44]. Some of them are already out of date. There is currently no detailed user 

manual or guide about how to use JET2. There is also a JET forum where JET users can post 

questions, and the JET project owner was generally responsible for answering those questions. 

The problem is, the same question was often found asked several times given that a complete 

document about JET is still missing. We believe this is a problem that JET must resolve to obtain 

more users, especially given its comprehensive code generation capabilities. 

5.4.2 About	
  ArchStudio	
  

Extensibility is an important feature of ArchStudio, and this was directly reflected in our 

implementation of 1.x-way mapping. First of all, the extensions of xADL schema to model state 

diagrams, sequence diagrams, and architecture changes were relatively straightforward with the 

provided tools (e.g. Apigen). Not only a data binding library was automatically generated for 

new schemas, which offers programmatic interfaces for manipulating architecture descriptions, 

but also the integrated ArchEdit tool can be used to graphically browse the architecture 
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description that supports the new schemas in a tree format. Even the existing xADL schema was 

also created with the extension under consideration. For example, in the xArch Java 

Implementation XML Schema, there are two elements defined to link a component to its 

corresponding source code, mainClass and auxClass. During our implementation of 1.x-way 

mapping, we could simply use the former to represent our architecture-prescribed code and use 

the latter to represent the user-defined code without any additional changes made. 

Modularity is another favorable feature of ArchStudio. What this meant in our 

implementation was that all the new xADL schemas we defined were saved independently and 

were clearly separated from the existing xADL schemas. They do not interfere with existing 

schema, and can be easily added or modified. Moreover, the implementation of ArchStudio itself 

is also well organized. The source code is saved into different packages that correspond to 

different architecture components, which are loosely coupled. This to a great extent facilitated 

our implementation. For the majority of our implementation, we could just create new 

components and work independently of other parts of ArchStudio. The only part of the work 

where we had to look at the existing code was recording architecture changes, which was 

integrated into the logics of Archipelago. Even so, the process was still relatively easy, given that 

most modification logics (e.g. add component, remove link, etc. ) were centrally specified in 

several files that could be easily located from their class names. 

xADL 2.0 is accompanied by a number of tools that provide basic capabilities to xADL 

users: parsing, editing, serializing, low-level editing, and so on. In particular, the data binding 

library of xADL and its xArchADT wrapper offer a high-level interface (e.g. addComponent, 

addInterface) to edit xADL documents, shielding users from underlying XML details (e.g. tags, 

attributes, etc.). This is recognized as an important benefit of xADL and ArchStudio. However, it 
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would be better if an interface that accepts the XPath expression (the XML Path Language, a 

query language for selecting nodes from an XML document) [152] could be provided. In that 

way, it would be more efficient for users to parse the xADL document and directly fetch the 

element of their interest. At this point, all the read/write operations on the xADL document can 

only go through the data binding library. 

Finally, ArchStudio is still a research-oriented tool. It is not fair to compare it with some 

commercial tools, such as IBM Rational Software Architect, even though we believe ArchStudio 

in many aspects outperforms these existing products. In particular, the extensibility and 

modularity of ArchStudio make it an ideal platform to perform architecture related research. 

Based on our experience, some further improvements can be made to get ArchStudio even better, 

such as usability and documentation. Some initial work has already been done in this regard 

[139]. The 1.x-way mapping tool integrated with ArchStudio also partially addresses the 

usability issue. For example, users do not have to manually write some framework specific code, 

which is often found tedious and error prone. As to the documentation, it is fine in terms of how 

to use ArchStudio. In contrast, the document about how to contribute to ArchStudio as a 

developer is still limited. For example, there is no specific document talking about how to use the 

BNA4 framework to build additional graphical elements in Archipelago. 



www.manaraa.com

131 
 

6 Experiments and Validations 

This chapter is dedicated to the validation of the 1.x-way mapping approach. It starts 

from a description of the overall objectives of the validation, and then specifically introduces 

three case studies that address different aspects of the approach. For each of these case studies, 

its corresponding introduction in this chapter covers the applied evaluation method, collected 

results, threats to validity, and conclusions that can be made about 1.x-way mapping based on the 

case study. At the end of the chapter, justification is also made about why the results collected in 

our validation can be generalized to other real software systems.  

6.1 Objectives 

The overall purpose of the validation is to validate the hypothesis presented in Chapter 1- 

1.x-way mapping can be applied in the development of a realistic system to prevent its 

architecture-prescribed code from being manually changed by programmers, and support 

automatic mapping of structural and behavioral architecture changes to code. The emphases of 

the hypothesis are (1) the approach can be applied to a realistic software system; (2) automatic 

mapping of architecture changes to code and protection of architecture-prescribed code are valid 

features; (3) the features listed in (2) are applicable to behavioral architecture specifications. 

Correspondingly, our validation is specifically focused on these three points. We want to ensure 

that the 1.x-way mapping approach is practical in real software development, and its features 

really work as presented earlier in the dissertation. 

First of all, we validate if deep separation as the basic requirement of 1.x-way mapping is 

applicable to the implementation of a real program of significant complexity. Deep separation is 

the only cost that 1.x-way mapping users have to pay for its support for architecture-
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implementation conformance discussed above. It directly decides the applicability or feasibility 

of 1.x-way mapping, especially considering that programming patterns and frameworks are 

widely adopted in current software development. Thus, it is important to validate that deep 

separation does not compromise or conflict with existing implementation technologies. 

Next, we focus on the claimed features of 1.x-way mapping when it is used to manage 

changes of significant size that are made to the above program. In particular, we want to evaluate 

how frequently an architecture change can be mapped to code automatically, semi-automatically, 

or even manually, and how often - if ever - an accidental change of architecture-prescribed code 

may happen given that it is supposed to be avoided with 1.x-way mapping. Note that the manual 

changes to user-defined code for logic completion should not be considered as a violation of the 

hypothesis. Instead, we still consider 1.x-way mapping as being able to support automatic change 

mapping as long as it can automatically update corresponding architecture-prescribed code and 

send relevant change notifications to user-defined code when necessary. 

Finally, we evaluate how the involvement of behavioral mapping affects the statistics 

collected in the second step. 1.x-way mapping will be considered to be able to support behavioral 

mapping if all the behavioral architecture changes can be mapped to code automatically or semi-

automatically depending on specific change types. If manual changes are involved, they should 

be specifically studied and analyzed to see if they are caused by the design of the 1.x-way 

mapping approach. 

An ideal way to validate all three dimensions mentioned above would be doing a long-

term study of how the 1.x-way mapping tool can be used to manage development changes in a 

real software project. Such a study is currently pending. Instead, we applied the 1.x-way 

mapping approach to the evolutions of a pre-existing software application, ArchStudio 4, where 



www.manaraa.com

133 
 

our approach was implemented and integrated. We refactored the code of ArchStudio with the 

deep separation mechanism first. The purpose was to (1) validate the applicability of deep 

separation in a real system and (2) prepare for the subsequent replaying evaluations and enable 

us to start an experimental development. After that, we replayed the changes made to ArchStudio 

in two research projects with the help of our 1.x-way mapping approach. That is, we replayed 

history, but using the 1.x-way mapping version of the system from the refactoring evaluation. 

The first project we replayed was Architecture-Centric Traceability for Stakeholders (ACTS) 

[66]. In this project, structural changes had been made to both the architecture and the code of 

ArchStudio to build and integrate a tool that automatically captures traceability links between 

architecture and other development artifacts. Replaying its development history offers an 

opportunity to fully exercise 1.x-way mapping’s capability of managing structural architecture 

and code changes mentioned above. The second project was the development of xMapper – the 

tool that implements 1.x-way mapping in ArchStudio. This project was special in the sense that 

behavioral architecture diagrams and changes had been involved, based on which the behavioral 

mapping feature can be validated for 1.x-way mapping. 

6.2 Evaluation I: Deep Separation of ArchStudio 4 

ArchStudio 4 is an Eclipse-based architecture development environment that has been 

developed and maintained by our research group for many years. Its architecture and code are 

both open for public access. The code of ArchStudio 4 is accompanied by an explicit architecture 

model that consists of forty components, corresponding to more than 85KSLOC. A primary 

benefit of exercising 1.x-way mapping with ArchStudio 4 is that it has been extended in several 

research projects [8, 68, 139], where significant changes were made to its architecture and code. 

ArchStudio 4 represents an open source system whose development and evolutions were 
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committed independently (e.g. by different people and for different purposes). In particular, the 

changes made were for a specific task, and happened before 1.x-way mapping was developed. 

This provides a chance to re-do the changes based on our 1.x-way mapping approach without 

inducing biases. 

Before 1.x-way mapping was applied, the ArchStudio code had to be refactored [93] 

based on the deep separation mechanism. This is also to answer the first question raised in 

Section 6.1 about whether deep separation of 1.x-way mapping is applicable to the 

implementation of a real program of significant complexity. At this point, we believe ArchStudio 

4 is qualified because (1) ArchStudio 4 is a software system that is being used at UC Irvine, in 

several companies and universities. (2) ArchStudio 4 is a relatively complex system that 

integrates a number of sophisticated tools and can be extended with more. (3) ArchStudio 4 is 

built on the myx.fw architecture framework introduced in Section 2.2.2 and involves extensive 

use of programming patterns and code libraries, both of which are the norm rather than the 

exception in current software development. Thus, we can safely draw the conclusion that deep 

separation is practical with real software systems if we can successfully apply it to the code of 

ArchStudio 4. Threats to validity exist as well, and they are also specifically discussed later in 

this section. 

6.2.1 Evaluation	
  Method	
  

Figure 6-1 is ArchStudio 4’s (build 4.0.5) architecture model as shown in the 

Archipelago editor. Due to the size of the diagram, the elements are too small to be clearly seen. 

The point of including this diagram here is to highlight the layered aspect of the architecture and 

provide an overview of how ArchStudio’s components are organized. In the evaluation, we 

refactored the ArchStudio code in the bottom-up order. In this way, the impact of the refactoring 



www.manaraa.com

135 
 

process on the whole system was kept minimal given that each component in the ArchStudio 

architecture depends on its adjacent upper layer [33]. 

Figure 6-1: ArchStudio 4's architecture. 
 

A tool that can support the process of code refactoring based on deep separation is not yet 

available. To enable the evaluation, we generated the initial architecture-prescribed code for each 

component first (to a temporary file), used the generated code as a reference to identify 

corresponding code in the existing code, and finally decoupled them from implementation details 

using the deep separation mechanism described in Section 4.3. By decoupled, it usually means 

the process of creating new classes or interfaces, copying and pasting, and changing certain code 

(e.g. variable names) of existing classes. In some cases, we also needed to update the templates 

of our code generator to satisfy some special needs as described below. 
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When problems occurred, for example, the code of some components could not be 

separated exactly as what is specified by the deep separation due to the application of some 

technologies, we first tried to modify code generation templates or the configuration panel 

mentioned in Section 4.4. This was done under the precondition that the changes made do not 

break the basic principles of deep separation – the architecture-prescribed code and user-defined 

code of a component are separated into independent elements (classes in this case), and 

programmer’s changes are limited to user-defined code. If the problem remained, we then tried 

to change the way these components were implemented so that the deep separation mechanism 

can be finally applied. Again, it must be guaranteed that the same functionality of the component 

is maintained. At this point, we tried to keep the changes minimal. If neither of the above was 

applicable, we wrote down the specific problems and did some post hoc analysis to see if these 

problems were inherent to the design of deep separation, or simply due to the limitations of 

specific implementation technologies. 

We applied deep separation to the implementation of all components in the ArchStudio 

architecture shown in Figure 6-1. During this process, some similar problems were found and 

similar solutions ended up being applied. We began to realize that the components could be 

divided into groups based on how deep separation was applied to them. The code of components 

in the same group basically could be refactored in the same way for deep separation, and similar 

strategies were usually used to refactor the code. In addition, we found that the way a component 

is grouped is closely related with its position in the architecture. Components that are adjacent in 

the architecture (e.g. located in the same layer) tend to be classified in the same group (i.e. 

refactored in the same way). For example, components in the bottom layer (e.g. the components 
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that contribute GUI elements) of the architecture were coded in a similar way in ArchStudio, and 

therefore, their implementations were refactored similarly. 

6.2.2 Results	
  

Table 6-1 shows the results of applying deep separation to the code of ArchStudio 4. As 

we introduced earlier, all the ArchStudio components are divided into different groups based on 

the strategy taken to refactor their code. Overall, deep separation was successfully applied to the 

implementation of all the components, although some of them needed special treatment, such as 

modifications to code generation templates, the configuration panel, or the way the components 

were implemented. Note that all the changes made were to facilitate the separation process, and 

none of them were essential to deep separation. Changing templates and the configuration panel 

was primarily to automate the process of updating architecture-prescribed code, whereas 

changing the implementation of some components was to make the boundary of its architecture-

prescribed code and user-defined code clearer. 

Another thing to note is that there were several places where generated code had to be 

manually edited, for example, to catch/process Java exceptions. This is not recommended in 1.x-

way mapping, and can be seen as a compromise we made given current code generation and 

modeling technologies. However, this does not affect the validity of the deep separation 

mechanism, because what is essential about deep separation is that architecture-prescribed code 

and user-defined code are separated and integrated in the specified way, and programmer’s 

changes are limited to user-defined code. Automatic update of architecture-prescribed code is a 

final goal, even though it may be hard to completely realize at this point. 
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#  Components Problems Solutions / Comments 

1 

Pruner, Selector, Version Pruner, 

Boolean Evaluator, Boolean Notation, 

Graph Layout, Guard Tracker, Editor 

Preference Panel, Base Preference 

Panel, Editor Manager, Schematron 

Preferences, Archipelago Preference 

Panel, Archipelago Types Preference 

Panel, Graph Layout Preferences, 

Archlight Preferences, Launcher, xArch 

Change Set Sync 

Some variable names (e.g. 

the references to connected 

components) did not match 

those of generated code. 

Only some variable names 

were changed. These 

components are “good 

citizens” of deep 

separation. 

2 

Archlight Tool Aggregator, Archlight 

Issue ADT, Preference ADT, Archlight 

Test ADT, Archlight Notice ADT, File 

Tracker, File Manager 

1. The existence of multiple 

provided interfaces. 

2. Arch-prescribed code 

had additional interfaces to 

implement. 

Changed the code 

generation templates and 

configuration panel. 

3 Archlight Issue View, Archlight Notice 

View, Schematron, xArch Change Set 

Implemented Interface 

IMyxDynamicBrick. 
Used a different template. 

4 
Archipelago, ArchEdit, Archlight, 

AIMLauncher, Type Wrangler, xArch 

Change Set View, Selector Driver 

1. A special pattern was 

used to implement these 

components. 

2. Both architecture-

prescribed code and user-

defined code had to extend 

some pre-defined classes. 

1. Changed the code of the 

components to make 

architecture-prescribed and 

user-defined code clear. 

2. Code generator was also 

changed to address the 

class extension issue. 

5 xArch ADT, AIM, Resources, xArch 

Change Set ADT 

1. Special technology was 

applied (e.g. Java dynamic 

proxy class). 

2. Reuse of code that was 

located in different projects. 

1. Moved technology-

specific code to user-

defined part. 

2. Moved the reused code 

to the same project as the 

arch-prescribed code. 

 
Table 6-1: Results of Evaluation I. 
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The first group of components shown in the above table can be seen as “good citizens” of 

deep separation. They did not require any major changes to either the existing code or code 

generation templates, and deep separation could be easily applied to them. All the changes 

needed were simply renaming some variables. Close to half of the ArchStudio components fell 

into this group. On the one hand, this saved us a lot of time and effort in the refactoring process. 

On the other hand, it reflects the fact that deep separation naturally matches the current 

implementation of ArchStudio. All these components were developed before 1.x-way mapping, 

yet most were developed in the spirit of deep separation. Typical examples of components in this 

group are Boolean Evaluator, Pruner, Selector, and Editor Manger. Note that all these 

components are located in the middle layers of the architecture. They do not interact directly 

with the user as the components in the bottom layers do, and are not involved with File I/O as the 

components in the top layers are. 

The second group of components could not be refactored as easily as the first group, but 

they were still successfully handled after we made some changes to either the code generation 

templates or the configuration panel. Representative components in this group include File 

Tracker, Archlight Tool Aggregator, and Archlight Issue ADT. They were special primarily 

because the code generator we first built was not flexible enough to deal with all possibilities 

during code generation, rather than the deep separation mechanism itself being limited. That 

said, these components could be potentially moved to the first group with a comprehensive code 

generator built. For example, some components in this group had multiple provided interfaces, or 

expected their architecture-prescribed code to implement interfaces that are not specified in the 

architecture due to the application of certain programming patterns. The former was addressed in 

our evaluation by making some changes to the code generation templates, while the latter was 
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addressed by allowing users to specify additional interfaces in the configuration panel. Either 

way, the deep separation mechanism was still successfully applied to these components. 

Components in the third group include Archlight Issue View, Archlight Notice View, 

Schematron. The implementation of these components exploited a special design of the myx.fw 

framework to provide support for runtime dynamism. Their code implemented an interface, 

IMyxDynamicBrick, which requires the implementation of several callback methods so that the 

framework can notify the code of these components when a link is being connected to or 

disconnected from their interfaces at runtime. This allows a specific component in the 

application to support runtime dynamism where it is needed, without complicating components 

that do not need it [33]. As a result, a different code generation template was used for these 

components. This also requires our code generator to be highly customizable so that not only 

specific code generation parameters (e.g. class names) can be changed, but also the template to 

be used can be specified during the code generation process. 

The fourth group primarily consists of components that contribute views, editors, and 

other GUI elements. Examples include ArchEdit, Archipelago, Archlight, and Type Wrangler. 

These components were implemented in ArchStudio in such a way that addressed a conflict 

between ArchStudio and Eclipse concerning how the components are instantiated [38]. Simply 

speaking, there were two classes that implement each architecture component, xxxEditor and 

xxxMyxComponent (xxx is the name of a specific editor). The former extended the 

AbstractArchstudioEditor class and was loaded by Eclipse, while the later extended 

AbstractArchstudioEditorMyxComponent and was instantiated by ArchStudio. The two base 

classes encapsulated a mechanism that facilitated the integration of ArchStudio and Eclipse. 

From the perspective of 1.x-way mapping, both xxxMyxComponent and its parent class 
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AbstractArchstudioEditorMyxComponent could be seen as architecture-prescribed code and were 

thus processed. The code generator must be highly customizable in this case, so that necessary 

parameters could be set during the code generation process, including the name of the editor. As 

to xxxEditor, it was seen as user-defined code that extended AbstractArchstudioEditor. What was 

special at this point was how the architecture-prescribed code and user-defined code were 

integrated. Instead of using the method call mechanism described in Section 4.3, an existing 

class called MyxRegistry was used for integration. It provided the methods of register, map, and 

waitForBrick that map architecture-prescribed code to its corresponding user-defined code. As a 

result, deep separation was finally applied to the components in this group, even though changes 

in both code generator and existing code had to be made during this process. 

Finally, the fifth group contains several components that can be seen as special cases, 

including Resource, AIM, and xArch ADT. Resource, for example, used the technology of Java 

dynamic proxy class that needed to be initialized in a specific way. To refactor its code for deep 

separation, we moved the technology-specific code to user-defined part, and made initialization 

customizable during code generation. AIM and xArch ADT both used existing code as their user-

defined code to implement provided operations. In particular, the reused class was located in a 

separate project. Our first attempt on separating the code gave us a “circle detected in build path” 

error. After examining the problem, we realized that this was caused by the two plug-in projects, 

where architecture-prescribed code and user-defined code were located, had to maintain a mutual 

reference due to the design of deep separation. Our solution was simply moving the reused code 

to the same project as the architecture-prescribed code. This is further discussed in Section 6.2.4. 
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6.2.3 Threats	
  to	
  Validity	
  

The threats to validity of our success in applying deep separation include three primary 

factors. First of all, ArchStudio 4 represents an open-source academic project, where the 

technologies used are limited to some standard ones, mostly Eclipse technologies. It remains to 

be seen how deep separation can be used to refactor the code of a proprietary industrial 

application. The challenges that these systems may bring include the extensive use of 

accumulated domain-specific code or framework, domain-specific software architecture, or some 

proprietary development technologies. This is particularly true for those domains that are highly 

mature and require sophisticated domain-specific knowledge, such as financial planning, traffic 

scheduling, and so on. A significant amount of legacy code may exist in the software systems of 

these application areas, and this imposes a challenge to the deep separation mechanism. 

Another factor that may endanger the validity of this evaluation is related to the 

application of myx.fw framework in the implementation of ArchStudio 4. One the one hand, the 

framework provides us an opportunity to fully exercise deep separation with program patterns of 

the framework, ensuring that they are compatible to each other. On the other hand, the 

framework to some extent contracts the implementation space given that reusable constructs 

usually encapsulate certain implementation decisions from its users. In other words, there are 

less variations of how a component may be implemented with an architecture framework than 

without a framework. What this means to our deep separation is that a higher requirement on the 

customizability of the code generator may be imposed. An extreme case could be that some 

components may not have user-defined code at all, or its architecture-prescribed code contains 

nothing but a reference to user-defined code. 
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Finally, my pre-existing knowledge about ArchStudio may be another factor that affects 

the validity of this evaluation. Before working on 1.x-way mapping, I had the experience of 

developing a Myx-style lunar lander video game in ArchStudio. Although my role in that project 

was primarily as an ArchStudio user, instead of an ArchStudio developer or contributor, I still 

obtained some understandings about ArchStudio, such as how ArchStudio was started and so on. 

In addition, I also made some modifications to the code of ArchStudio (mostly the AIM 

Launcher tool) to make it support hierarchical architectures. All these may play a role in the 

success of applying deep separation to the code.  

6.2.4 Conclusion	
  

First, it is generally possible to apply deep separation to the code of a real program. We 

were able to enforce deep separation to the code of most of ArchStudio components. In 

particular, we found deep separation comports with the use of programming framework and code 

library, both of which are the norm rather than the exception in today’s software development 

and extensively exist in the implementation of ArchStudio. The ArchStudio code is built upon 

the myx.fw framework that provides abstract base classes for components and connectors. It also 

restricts the way that certain architecture variables be initialized, and provides lifecycle methods 

for each component to override. Manually writing the framework-specific code is not only 

tedious, but also error prone. In the evaluation, we made a special template that included the 

routine code and had them automatically generated as part of the architecture-prescribed code. 

Both software productivity and the usability of the programming framework were improved. In 

addition, the ArchStudio code is greatly dependent on some application-neutral code libraries. 

For example, one such library provides APIs for accessing and manipulating the xADL 

document where architecture specifications are saved. Mixing architecture-prescribed code and 
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the library code impedes the evolution of both parts. With deep separation enforced, the use of a 

system library can be encapsulated in user-defined code. In some cases, we were even able to 

simply use a class from a code library as user-defined code since all required operations were 

already provided by the class. 

Second, a configurable code generator is necessary to facilitate the application of deep 

separation. It provides a chance for the architect to address variations from predefined rules 

during code generation, so that the generated architecture-prescribed code does not have to be 

manually modified. One such variation happens when architecture-prescribed code of a 

component needs to declare the implementation of additional interfaces other than those that are 

specified in the architecture. This is particularly the case if the component contributes views, 

editors, and other GUI elements. As discussed earlier, a special implementation strategy was 

taken in ArchStudio to address an architecture mismatch problem between its myx.fw framework 

and Eclipse plug-in mechanism in terms of who controls loading and instantiating the 

ArchStudio GUI. Consequently, extensive interface implementation and class extension were 

involved. Another case where a configurable code generator is necessary is when user-defined 

code of a component needs to be initialized in a special way. In our evaluation, this happened 

when the implementation of a component used a special technology, e.g. Java dynamic proxy 

class, but the code generator was not sophisticated enough to express it. 

Finally, deep separation is not compatible with the mutual reference restriction of Eclipse 

plug-ins. There were components in ArchStudio whose implementation was spread over two 

Eclipse plug-in projects. To keep the changes minimal, we initially made the architecture-

prescribed code and user-defined code located in the two projects respectively. This gave us a 

“circle detected in build path” error. We then found that it was caused by an inherent 
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requirement of deep separation: architecture-prescribed code and user-defined code of each 

component must explicitly maintain a mutual reference as illustrated in Section 4.3.1. In the 

context of Eclipse plug-ins, what this meant was that the two plug-in projects mentioned above 

had to add each other to their dependency list. Unfortunately, it was not allowed by the Eclipse 

plug-in mechanism. This is a situation where deep separation cannot be directly applied. 

However, we believe its impact is of a limited range considering that (1) this failure is Eclipse 

specific; (2) it is in general not a good practice to have the implementation of a component 

spread over projects. In particular, the problem can be easily solved by either moving the code 

into one project or adding a code agent that acts as user-defined code in the project where the 

architecture-prescribed code is located. 

6.3 Evaluation II: Replaying Changes of ACTS 

Architecture-Centric Traceability for Stakeholders (ACTS) is a project that centered on 

the creation, maintenance, and application of traceability links between software architecture and 

other artifacts [66]. It tackles issues of catering to multiple stakeholder interests by using custom 

rules and mashups, and addresses issues that relate to capturing and maintaining links by 

prospective link capture, concepts from open hypermedia, and rules. As an implementation of the 

work, a traceability recording and analysis tool was built in ArchStudio and both architecture and 

code changes were made to ArchStudio. Eleven components were added to the ArchStudio 

architecture, and around 15KSLOC were written. All the involved architecture changes were 

structure oriented. The project repository was available for public access at [65]. 

After the ArchStudio code was refactored for deep separation, we chose to re-do the 

changes made to ArchStudio in the ACTS project with the help of the 1.x-way mapping 

approach. That is, we recovered and replayed the development history of ACTS on top of the 
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refactored ArchStudio system. The rationale for choosing ACTS is that its development history 

was well preserved and extensive architecture changes were involved. An independent branch 

had been created in the Subversion system [28] for this project when it first started, all 

subsequent development was checked in on a regular basis, and finally the branch was merged 

into the ArchStudio trunk after the project reached a stable condition. A typical development 

lifecycle was followed in this project. 

6.3.1 Evaluation	
  Method	
  

The process of replaying the development history of a project includes two specific 

activities: recovering changes and re-doing them with the 1.x-way mapping tool. Before 

replaying started, we ensured that the evaluation environment was set up appropriately. Figure 6-

2 shows the environmental setting of our evaluation, which was based on the Eclipse’s 

development and runtime workbench. The development workbench on the left represents the 

development environment of the 1.x-way mapping tool. This is a regular Eclipse development 

environment with the ArchStudio plug-ins installed. Its workspace contained all the ArchStudio 

packages and the code that we wrote for our mapping tool. The runtime workbench was started 

through running ArchStudio in the workspace as an Eclipse application. At that point, 

ArchStudio (including our 1.x-way mapping tool) was automatically installed as plug-ins in the 

Eclipse runtime workbench. In the workspace of the runtime workbench, we manually imported 

the ArchStudio packages that were refactored in Evaluation I for deep separation. The evaluation 

environment was then ready for replaying changes. 
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Figure 6-2: Replaying environment. 
 

With the help of Eclipse’s Subclipse plug-in [27] and the Trac system [132], we were 

able to recover the work done between January 2008 when a branch was created for the project, 

and the end of October 2008 when the branch was finally merged to the ArchStudio trunk. A 

PhD student and a Masters student worked together on the project, and in total made 112 

commits during this period. On average, there was one commit every two to three days. Figure 6-

3 is a screenshot of the project development history shown in Subclipse. 

For each of the change entries shown in Figure 6-3, we used the Trac system to check 

details about what specifically was changed. A screenshot of such change details is shown in 

Figure 6-4. Following this process, all changes checked into the repository could be successfully 

recovered. Note that our focus was on the architecture changes. In other words, we closely 

followed the updates made to the ArchStudio xADL document. While for the code changes, 

many of them were low-level implementation details and were simply ignored. We only cared 

about the code changes that were associated with an architecture update. Many such code 

changes were architecture related, such as to implement a component that was just added or 

update the code of a component that was changed in the architecture. 
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Figure 6-3: A screenshot of development history in Subclipse. 
 

 

Figure 6-4: Change details shown in Trac. 
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After change recovery was done, we manually made all the recovered architecture 

changes, mapped them to code with the 1.x-way mapping tool, and manually made necessary 

changes in user-defined code. Our overall strategy was starting a new architecture change session 

for each repository commit where architecture changes were involved. There were also commits 

that were either for small bug fixes or made code changes only. They were simply merged to the 

previous “unmapped” change session, which was mapped to code when the next architecture-

related commit arrived.  

In the case when more than one component was added to the architecture in a single 

commit, we assumed that they were developed in the top-down order and replayed that way. This 

was considering that the architecture of ArchStudio was organized into layers, with each 

component depending on its adjacent upper layer. Repeating this process finally generated 22 

architecture change sessions, which in total consisted of 130 architecture changes. Figure 6-5 

shows the recovered architecture milestones that were successively developed during this 

process. Note that Component Trace Criteria View in version 7026 at some point in the 

development was removed and does not exist in the later versions. 

We also made some changes to our code generator to facilitate the replay of some 

architecture changes. For example, one change we made was to make our code generator able to 

load java interface files that were located in a separate project. This was because the ACTS 

project was created in a separate Eclipse project from ArchStudio, even though ACTS itself was 

integrated as an ArchStudio tool. Unfortunately, current Eclipse JET tag library does not support 

this. Thus, we had to extend JET by creating our own tag to do this. Another change we made 

was for the similar purpose: generating code that is in a different project from the project where 

code generator is running. 
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Version #: 7026 

 

 

 
 

Version #: 7053 
 
 

 

Version #: 7076 

 

 
Version #: 7457 

 

Version #: 7548 

 
Figure 6-5: Recovered architecture milestones. 
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6.3.2 Results	
  

As a result of applying 1.x-way mapping, about two thirds of the changes were mapped 

to code in a completely automatic manner: only the architecture-prescribed code was updated 

while the user-defined code remained. The rest were semi-automatically handled, meaning that 

manual modifications were also required in user-defined code and appropriate architecture 

change notifications were sent correspondingly. Table 6-2 shows the details of the evaluation 

result. It is consistent with what is presented in Figure 4-7. 

 
 Auto Semi-auto Total 

Link Changes 49 _ 49 

Add Component _ 14 14 

Update Component 36 28 64 

Remove Component 3 _ 3 

Total 88 42 130 

 
Table 6-2: Results of Evaluation II. 

 

The manual work required for semi-automatically handled changes was primarily to 

complete application logic. For example, all the Add Component changes in the table had to be 

semi-automatically handled because, naturally, programmers need to work on implementation 

details of those new components. Note that only 28 of 64 Update Component changes actually 

required users’ manual work. This was because of the change analysis and refining process 

discussed in Chapter 5, where some changes were either discarded or addressed in the mapping 

of other changes. They were considered as being automatically handled since no manual work 

was actually required. For example, all the changes (e.g. add interface, edit description, etc.) that 
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were made to a newly added component were simply merged to the “Add Component” change 

that was previously recorded into the architecture change model. When mapping to code, no 

specific actions were taken for these afterwards changes and only the “Add Component” change 

was explicitly handled. This was based on our change filtering logic discussed in Section 5.2.3. 

Similarly, all the update changes made to a component that was later removed (e.g. Trace 

Criteria View) were also discarded and were seen as automatically handled. 

Compared with architecture changes, code changes were tricky to evaluate, because the 

ACTS tool as an extension of ArchStudio was also built upon the myx.fw framework. The 

framework reduced the circumstances where architecture-prescribed code could be accidently 

changed, given that it hard coded and encapsulated a portion of architecture implementation, 

including message exchange among components, architecture topology, and so on. Additional 

coding constraints were also induced due to the use of the framework, as mentioned earlier. In 

the evaluation, we decided to consider both direct changes of architecture-prescribed code and 

violations of the Myx coding constraints as errors that should be avoided. In this way, the effect 

of the framework was addressed. Sixteen such errors ended up being found in the 

implementation of the eleven ACTS components, all of which were successfully avoided during 

our replay with the help of 1.x-way mapping. One error discovered, for example, was that a 

reference to a connected component was initialized by simply calling its constructor. This did not 

break the architecture-code conformance, but it was not allowed by the myx.fw framework. 

During the evaluation, we also found some other mismatches between the architecture 

and code that we believe were caused by programmers’ work in user-defined code. One 

mismatch that we found, for example, was that the Trace Publish Extract Links View component 

actually did not use its out interface at all. In other words, it did not use any resource (e.g. 
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making any method call) through that interface. This was an error that 1.x-way mapping cannot 

address at this point, although we believe it was relatively easy to handle with some additional 

work done (e.g. static program definition/usage analysis) in the future. This kind of negating 

errors, as well as the inducing errors discussed in Section 4.4.4, are two kinds of problems that 

further study will address. 

Another problem found through code examination was that the code of the Trace 

Preference View component actually accessed the code of the Tracelink Controller component, 

even though they were not directly connected in the architecture as shown in Figure 6-5. This 

was a typical inducing error mentioned above. What was special in this case is that the reference 

to the Tracelink Controller component was actually passed from Tracelink View to Trace 

Preference View in the form of method parameter. Again, this kind of problem can be 

completely avoided if we require that the architecture-prescribed code of a component can only 

be accessed by the architecture-prescribed code of other components, as we specifically 

discussed in Section 4.4.4. 

6.3.3 Threats	
  to	
  Validity	
  

There are two primary risks to the validity of this evaluation. One is that we simulated, 

instead of using a real a software development scenario, by recovering and replaying 

development changes in a project. The other risk is again related to the application of an 

architecture framework. Both are discussed and justified below. 

Frist, some development changes could not be recovered from examining the commit 

history of the project repository, and thus failed to be replayed during the evaluation. For 

example, a single checkin in the project repository could involve the addition of more than one 

architecture component. As discussed earlier, we could not recover the exact order of how these 
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components were added. Even for a single component, there were also some editing operations 

that were lost since the repository can only record snapshots of the project development. In 

essence, we recovered the development history based on a series of development snapshots. 

Thus, it was almost impossible to recover a complete history of the project development. 

The use of the myx.fw framework also affected the result of how 1.x-way mapping could 

help to prevent mistaken changes of architecture-prescribed code, even though measures were 

already taken to keep the effect minimal as discussed above. An architecture framework 

facilitates the architecture-implementation mapping by providing well understood 

implementations, which assist developers in implementing systems that conform to the 

prescriptions and constraints of the architecture. From this perspective, it was inevitable that the 

discovered code changes that invalidate the architecture would be different from those without 

using an architecture framework. 

We believe our collective results are sustainable despite these risks because (1) all the 

essential changes and milestones of the project were covered in the evaluation, which was 

verified by one of original developers of the project; (2) the use of software frameworks is quite 

popular in complex software development, not to mention that additional measures were already 

taken in this regard during our evaluation. Of course, it would require a long-term study of 1.x-

way mapping in real software development to completely address these two concerns. 

6.3.4 Conclusion	
  

Evaluation II provides results regarding how 1.x-way mapping can be used in the 

mapping of structural architecture changes to the code. All the recovered architecture changes 

were replayed and most were automatically mapped to the code using the 1.x-way mapping tool. 

They all ended up being correctly recorded in the architecture change model. This was verified 
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by a manual examination of the model. For those changes that could not be mapped to code in a 

completely automatic manner, they were due to missing application logic. At this point, 1.x-way 

mapping also played a positive role in the sense that it automatically updated the architecture-

prescribed code and sent notifications to user-defined code, so that we were able to solely focus 

on implementation details. During this process, change analysis and refinement greatly 

facilitated the map-to-code process given that many duplicate or unrelated changes were simply 

filtered out. It acted as a bridge between the architecture change model and the mapping tool. 

Significantly, the architecture remained consistent with the code structure after the map-to-code 

process was done, verified by an ArchStudio tool called AIM Launcher. Based on these results, 

an initial conclusion can be safely drawn that the change management mechanisms of 1.x-way 

mapping work as designed, and specific kinds of architecture changes can be automatically 

mapped to code in specific ways. As mentioned earlier, we intend to further validate this through 

a long-term study with a real software project. 

With respect to code changes, the focus of 1.x-way mapping is on the prevention of 

mistaken changes to architecture-prescribed code. At this point, a number of errors were 

discovered during our replay of the development history. However, most of these errors were 

framework specific in the sense that the code simply did not follow the myx.fw framework 

programming rules (e.g. getting the reference though getFirstRequiredServiceObject). Only a 

few errors were direct results of accidentally changing the architecture-prescribed code. A most 

common case discovered was that the variable name of an interface in the code was not same as 

what is defined in the architecture. Overall, the accidental changes of architecture-prescribed 

code in the evaluation were not as many as we expected. We believe this was primarily due to: 



www.manaraa.com

156 
 

(1) the original developers of ACTS were graduate students that were in the architecture area. (2) 

the versions uploaded to the repository were generally those that were well validated. 

As noted earlier, a number of other programmer-induced negative changes (e.g. negating, 

inducing, etc.) were also discovered. At this point, all we can say is that 1.x-way mapping makes 

the discovery of these errors easier since the architecture is accessed in an explicit manner. What 

can be further done to avoid these errors is as what is suggested in Section 4.4.4, aided with 

static program analysis. This is one of our future tasks, and we believe 1.x-way mapping has 

potentials to completely address these issues. 

6.4 Evaluation III: Replaying Changes of 1.x-Way Mapping 

To evaluate how the automation of change mapping would vary when behavioral changes 

were involved, we remade changes done to ArchStudio in the development of the 1.x-way 

mapping tool itself with the developed tool. All the changes made to the ArchStudio architecture 

in previous projects (including the project in Evaluation II) were structure oriented, since 

ArchStudio itself only had a structural model and support for behavioral modeling (e.g. a fully-

featured state diagram editor) was also limited. Here, behavioral changes are also considered. 

6.4.1 Evaluation	
  Method	
  

We applied the same evaluation method here as described above with ACTS. Again, the 

replaying process was based on Eclipse’s development and runtime workbench shown in Figure 

6-2. The set up in the Eclipse development workbench was exactly same, with ArchStudio 

installed as plug-in and the developed 1.x-way mapping tool in the workspace. The difference in 

the runtime workbench was that its workspace now contained the refactored ArchStudio code 



www.manaraa.com

157 
 

plus the 1.x-way mapping tool under development. This was also the place where we replayed 

the development history. 

As in Evaluation II, recovering development history in this evaluation involved the usage 

of the Subclipse and Trac systems. A separate branch was created in the ArchStudio Subversion 

repository for our 1.x-way mapping when the project began. A difference was that there were 

detailed notes available in this case since I am the original developer. As a result, a more 

complete history was recovered - starting from March 2011 when the branch was created to 

September 2011 when the implementation was completed and a demo video was created. In 

total, there were sixty commits during this period.  

Replaying recovered changes was also similar to what we did with ACTS: we manually 

made all the recovered architecture changes, mapped them to code with the 1.x-way mapping 

tool, and again manually made necessary changes in user-defined code. Only in this case a 

number of adapted behavioral diagrams were involved. Figure 6-6 shows the architecture 

diagrams of our 1.x-way mapping tool. The sequence diagram in the figure enforced how the 

mapping tool interacted with the code generator and notifier exactly as described at the 

beginning of Section 4.2. The code was directly generated from these diagrams and they were 

kept consistent. 
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Figure 6-6: Architecture diagrams of 1.x-way mapping. 
 

6.4.2 Results	
  

In the evaluation, 118 architecture changes were recorded. 90 of these changes (about 76 

percent) were automatically mapped to code, with the rest semi-automatically handled. Notice 

that the automation rate was even higher than what occurred when replaying the ACTS project. 

This was because most behavioral changes actually do not require manual intervention. There 

was one case in the evaluation that we had to manually respond to a behavioral change when a 

sequence diagram was removed. Correspondingly, we had to manually implement the specified 

operation in the user-defined code. In some other cases, we had to manually add Java exception 

handling statements to the generated code since our diagrams do not support this, and these 

changes were also classified as semi-automatically handled. 
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 Auto Semi-auto Total 

Link Changes 15 _ 15 

Component Changes 37 22 59 

Behavior Changes 38 6 44 

Total 90 28 118 
 

Table 6-3: Results of Evaluation III. 
 

Change analysis and refinement as discussed in Section 5.2 are applicable to the 

behavioral changes as well. Not only recorded behavioral changes are refined, but also the 

refined behavioral changes are further refined against the component changes. For example, all 

the behavior changes that are made on a newly added component will be discarded and only an 

Add Component change will be processed in the end. This design also contributed to the high 

automation rate of behavioral changes during our evaluation. 

6.4.3 Threats	
  to	
  Validity	
  

A main threat to the validity of this evaluation is that we replayed the development 

history of our own project. On the one hand, this self-demonstration further proved the 

effectiveness of our approach since the same kind of approach can be used to develop itself. On 

the other hand, however, biases may also be induced. First of all, I was fully aware of the system 

as its original designer and developer, and chances were relatively low that I would accidentally 

change architecture-prescribed code. This is also an important reason that code changes were not 

studied in this evaluation, just to make the whole process more fair. Moreover, I knew the 

development history already at the beginning of the evaluation. This may not have a direct 

impact on the evaluation results since all I did was following the commit record and replaying 

changes. However, it is still possible that at some point I may subconsciously take some actions 

favorable to the following development.  
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Another threat concerns that this was still a replaying process. As discussed earlier, it was 

inevitable that some development activities failed to be recovered, even though it was done with 

the help of detailed notes in this evaluation. Overall, the missing changes may to some extent 

affect the specific automation rate, but we do not expect essentially different results to be 

reached. This was based on the design of 1.x-way mapping and the fact that all types of changes 

shown in Figure 4-7 were covered in our evaluation. For example, if there were situations where 

repetitive changes had to be made to the generated code, what could be done was to change our 

code generator to make it more customizable as what we did in Evaluation I. Finally, note that 

scalability is not specifically addressed in our evaluation. In other words, it is still to be further 

validated how 1.x-way mapping performs in practice when the number of models or model 

changes increases. 

6.4.4 Conclusion	
  

Automatic mapping of behavioral architecture and its changes to the code is an important 

feature of 1.x-way mapping. In particular, we noticed in this evaluation that most behavioral 

changes actually were mapped to code in a complete manner and no further manual work was 

required. Change notifications, however, were still sent to user-defined code for the purpose of 

precaution. For those behavioral changes where users’ manual work was involved, most of them 

were to complete the generated code, instead of addressing consistency issues. As discussed 

earlier, this was primarily due to the limitations or incompleteness of current behavioral models 

(e.g. sequence diagrams), not the design of 1.x-way mapping. It is important to note that the 

conclusion drawn here so far is only applicable to the behavioral models described in Chapter 4 

of the dissertation. It is our future work to explore how 1.x-way mapping can be used to support 
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other behavioral models, especially those formal models that are often based on process algebras, 

such as CSP, Pi-calculus, and so on. 

6.5 Discussion: Generalization of Results 

The evaluations presented in this chapter validate the hypothesis of this dissertation. 1.x-

way mapping can be applied in the development of a realistic system to prevent its architecture-

prescribed code from being changed by programmers, and support automatic mapping of 

structural and behavioral architecture changes to code. Note that this was only done in the 

context of ArchStudio. In other words, what has been validated is that the hypothesis about 1.x-

way mapping is true with the ArchStudio system and its derivative systems, ACTS and xMapper. 

Below we discuss why we believe the collected results can be generalized to other real 

applications. 

First of all, most technologies used in the development of the ArchStudio system are well 

understood and have been widely used in other existing systems, such as the Java programming 

language, the component-and-connector architecture model, the Eclipse platform, and the XML 

technologies. Compared with them, the myx.fw framework that ArchStudio was built upon may 

not be common. However, specific concepts and patterns that the framework includes (e.g. class 

inheritance, callback lifecycle methods, etc.) are widely adopted as well. In particular, the use of 

frameworks, middleware, or domain-specific architectures is becoming increasingly important in 

today’s software development. From this perspective, we believe the conclusions made in the 

evaluations, such as how deep separation can facilitate the use of a framework in Evaluation I, 

and automatic mapping of architecture changes in Evaluation II and III, are not limited to the 

ArchStudio system. 
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Second, complexity, changeability, conformity, and invisibility are identified as four 

essential properties of modern software systems [16]. We believe ArchStudio is also 

representative in terms of these properties. As mentioned earlier, ArchStudio consists of around 

85KSLOC and forty architecture components. Its implementation involves the activities of File 

I/O, GUIs, code generation, and dynamic instantiation. In addition, ArchStudio has been 

extended in several research projects, where significant changes were made to its architecture 

and code. Significantly, the development and evolutions of ArchStudio were committed 

independently (e.g. by different people and for different purposes). ArchStudio is currently used 

in a couple of universities and companies. Thus, it is also under constant pressure of conforming 

to new needs of ArchStudio users. Invisibility is an inherent property of all software systems, 

and ArchStudio is not the exception. 

Finally, the previous research experience with ArchStudio in our group reveals the 

effectiveness of ArchStudio both as a development platform and as a case study example in 

software architecture research. A number of important research results have been generated and 

validated based on the ArchStudio system, including software traceability [8], dynamic 

adaptation [59], product line architectures [68], and software security [121]. On the one hand, 

ArchStudio plays an important role in fostering and validating these research results; on the other 

hand, the success of the corresponding research further proves the generalization of ArchStudio-

based research results, especially in the area of software architecture. 
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7 Conclusion 

In this study, a new architecture-implementation mapping approach, 1.x-way mapping, is 

developed to maintain conformance between software architecture and code during development. 

The focus of the work is regulating the implementation of software architecture with a code 

separation mechanism, explicit modeling of architecture changes, automatic regeneration of 

architecture-prescribed code, and sending architecture change notifications to user-defined code. 

This approach has a number of desirable properties, including suppression of mistaken changes 

of architecture-prescribed code, automatic mapping of specific kinds of architecture changes to 

code in specific ways, and support for the mapping of behavioral architecture specifications to 

code. 

7.1 Summary 

This research tackles the issue of maintaining architecture-implementation conformance 

during software development. This is essential to architecture-centric software development, but 

fails to be addressed by existing approaches. Current architecture-implementation mapping 

approaches are deficient in that change mapping between architecture and code is weakly 

supported and most approaches are structure-oriented only. This is partially due to architecture 

being implemented in ad hoc ways, and architecture-prescribed code is mixed with 

implementation details. In particular, no explicit change management mechanism is provided to 

either regulate or analyze changes that are made to the two types of artifacts. As a result, 

significant overhead is incurred in architecture-centric development to manually maintain 

architecture-implementation conformance – overhead that few are willing to bear. 
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1.x-way mapping addresses the issues of change management and behavioral mapping to 

maintain architecture-implementation conformance. It regulates the implementation of software 

architecture by separating architecture-prescribed code and user-defined details of each 

architecture component into two independent program elements. This is called deep (linguistic) 

separation. Based on it, manual changes made by programmers are limited to user-defined code, 

and cannot contaminate architecture-prescribed code. In this way, architecture-implementation 

conformance is enhanced. The complexity of reverse engineering and roundtrip engineering is 

also avoided. In addition, deep separation enables support for behavioral architecture-

implementation mapping with system dynamics modeled as UML-like sequence diagrams and 

state diagrams, from which code can be automatically generated in a way that maintains code 

separation. 

With regard to architecture changes that break architecture-implementation conformance, 

an architecture change model is maintained in 1.x-way mapping to automatically record and 

classify various architecture changes. The recorded changes are organized into different change 

sessions, each of which comprises a list of specific changes and is mapped to code as a unit. All 

the changes in a change session are automatically mapped to code by completely regenerating 

architecture-prescribed code of modified components, with the code of other components not 

affected. For architecture changes that may affect user-defined code, architecture change 

notifications are also generated and delivered to corresponding user-defined code. In particular, 

change analysis and refinement is enforced during this process so that changes that together have 

no impact on the code can be automatically filtered away. By this means, not only unnecessary 

mappings are avoided, but also mappings that should be made are automated in specific ways. 
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1.x-way mapping is implemented and integrated as a tool called xMapper in ArchStudio 

4, an Eclipse-based architecture development environment. The modularity and extensibility of 

ArchStudio and Eclipse played a positive role during the implementation. These two tools not 

only are easy to extend with new capabilities, but also provide a number of technologies, such as 

the JET code generation engine, Eclipse Markers, and the BNA framework, that were directly 

exploited in our implementation. To validate the utility of 1.x-way mapping, we applied it to the 

code and evolutions of ArchStudio 4. Specifically, we refactored the code of ArchStudio and 

replayed changes that had been made to ArchStudio in two research projects by redoing them 

with xMapper. The results show that (1) deep separation of 1.x-way mapping is applicable to the 

implementation of a program of significant complexity; (2) most architecture changes can be 

mapped to code in a completely automatic manner with the help of 1.x-way mapping, and the 

rest is semi-automatically handled; (3) the extensive application of 1.x-way mapping in complex 

software development, however, requires further development of modeling and code generation 

technologies. 

7.2 Future Work 

Architecture-implementation mapping directly determines the degree to which software 

architecture can be used in development to improve software productivity and quality. We 

believe that the 1.x-way mapping approach developed in this study can bring new power to some 

architecture-centric development activities, including architecture-based dynamic adaptation, 

product line architectures, and advanced architecture change management. Below some future 

enhancements and potential applications of 1.x-way mapping are identified. 
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7.2.1 Remaining	
  Challenges	
  of	
  Architecture-­‐Implementation	
  Mapping	
  

1.x-way mapping focuses on protecting architecture-prescribed code and mapping 

architecture changes to code to maintain architecture-implementation conformance. One 

remaining challenge, however, is how to prevent programmers’ work in user-defined code from 

invalidating the architecture. As discussed earlier, user-defined code may invalidate the 

architecture by inducing new negative properties or negating existing architecture elements 

without using them. For example, the user-defined code of a component may reference another 

component that this component is not connected to, or the code may not use services provided by 

a connected component at all. Either way, it is hard to map this back to the architecture during 

software development, especially considering that the code-to-architecture mapping actually 

conflicts with the principle of architecture-centrality.  We believe 1.x-way mapping has the 

potential to completely address this problem. As discussed in Section 4.4.4, what can be done is 

to enforce that user-defined code of a component be only accessed by its architecture-prescribed 

code based on the deep separation mechanism. In this way, illegal accesses of the user-defined 

code from other components are avoided. 

Another potential enhancement to 1.x-way mapping is to send change requests, instead of 

change notifications, when user-defined code has to be modified in response to certain 

architecture changes. As discussed in Section 4.4.3, a change request describes what needs to be 

changed in user-defined code and provides more information regarding what to modify to 

accomplish a change than a simple change notification. Sending a change request is also feasible 

because of the way architecture resources are used in user-defined code of 1.x-way mapping: all 

accesses go through a single reference to the architecture. Static program analysis can be applied 

in this case. 
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7.2.2 Architecture-­‐based	
  Dynamic	
  Adaptation	
  

Dynamic adaptation refers to the capability of a software system that can modify its own 

behavior in response to changes in its operating environment (e.g. end-user input, external 

sensors, etc.) [116]. Architecture-based adaptation brings promising results in this regard. This is 

an approach where changes are first formulated in, and reasoned over, an explicit architectural 

model when the environment changes. Changes to the architectural model (usually at the level of 

components and connectors) are reflected in modifications to the application’s implementation, 

while ensuring that the model and the implementation are consistent with one another. It is at this 

point that 1.x-way mapping has the potential to play a significant role by dynamically mapping 

architecture changes to code.  

This can be performed in two specific ways. First, the architecture-prescribed code of an 

involved component can be regenerated, recompiled, and reloaded at runtime, without requiring 

user-defined code to be changed. Given that architecture-prescribed code may include the 

implementation of system dynamics, which is elaborated in Section 4.5, it becomes possible to 

dynamically associate a certain behavior with a component or several components. This is a 

significant improvement over existing architecture-based adaptation mechanisms, which usually 

can only support structural adaptations (adding components, links, etc.). Second, switches can be 

made at runtime between alternatives of user-defined implementations (e.g. using different 

system libraries) for an involved component. This time architecture-prescribed code remains 

stable, and its requests are dynamically redirected to different user-defined implementations 

based on the code integration framework presented in Section 4.3.2. By this means, a finer 

degree of granularity is enabled for dynamic adaptation.  
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Another potential benefit that 1.x-way mapping brings to architecture-based adaptation is 

its architecture change model. It provides a decent form to organize descriptions of formulated 

architecture changes. Specific issues that need to be addressed for dynamic adaptation include 

protecting integrity of adapted systems and identifying quiescent states when adaptation can 

safely occur. 1.x-way mapping induces additional difficulties at this point with one more layer of 

indirection in the implementation of each architecture component. 

7.2.3 Implementation	
  of	
  Product	
  Line	
  Architectures	
  

Keeping the cost of software changes low is another requirement in software evolution. 

This is particularly emphasized when making changes that are anticipated before system 

development starts. Anticipated changes usually occur when developing a family of software 

products, or a product line. For example, producing a new software product simply by extending 

a related existing product (e.g. adding an optional capability or customizing for different 

platforms). At this point, being able to reuse existing code that encapsulates domain, business, 

and technology information as much as possible becomes important. The use of product lines has 

become a principled form of software reuse over the past decade [149]. This is partially due to 

the application of product line architectures (PLAs), an architecture-centric approach to product 

lines. A PLA explicitly specifies variation points (e.g. optional and alternative elements) inside 

the reference architecture of an entire product line to differentiate products. Implementing a PLA 

is also a mapping problem, except that multiple products composed of core elements and 

variation points are involved. During this process, it is important that separation of concerns can 

be achieved among different component implementations as it is in the architecture. Otherwise 

extensive changes have to be made to the code of existing components to introduce variations, 
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and software reusability is compromised. However, separating concerns in the implementation 

artifacts along preferred boundaries involves significant challenges. 

We believe 1.x-way mapping can help to address the implementation problem of PLAs. 

On the one hand, architecture-prescribed code in 1.x-way mapping does not include details (e.g. 

platform specifics, domain knowledge, algorithm, system library usage, etc.) regarding how a 

programmer implements an operation, and thus, is sustainable to variations of these 

implementation specific concerns. Libraries of architecture implementations can be constructed 

from the same set of operations provided by user-defined code. On the other hand, user-defined 

code is relatively independent of architecture-prescribed code as well. It does not contain 

knowledge about architecture topology and message exchange among components, which are 

encapsulated in architecture-prescribed code. As a result, a separation of decision space is 

achieved within the implementation of each component, and both parts can vary independently. 

This has two implications to current PLA implementations. First, more variations are enabled for 

a PLA. Traditionally, variation points in a PLA are expressed at the level of components and 

connections. With 1.x-way mapping, they can be refined into individual components. For 

example, the usage of a different signal-processing algorithm can be specified as a variation of a 

component, which corresponds to different user-defined code. Or, a component can be 

customized with an optional interface. At this point, architecture-prescribed code may be 

regenerated and used without necessarily changing user-defined code. Second, the code 

reusability of each architecture component also increases. Since it is hard to completely separate 

concerns among component implementations as discussed above, 1.x-way mapping makes it 

possible to reuse a portion of an existing component’s code (e.g. architecture-prescribed code or 

user-defined code), instead of recoding the whole component to introduce variations. 
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7.2.4 Advanced	
  Architecture	
  Change	
  Management	
  

The architecture change model developed in 1.x-way mapping provides information for 

architecture-based code regeneration and architecture change notifications, both of which are 

specific to architecture-implementation mapping. We believe more advanced change 

management activities are enabled based on the architecture change model, including parallel 

change sessions, change visualization, and change replay. 

Parallel change session means multiple (unmapped or open) change sessions can co-exist 

in the architecture change model. Each session contains changes that modify different portions of 

the architecture, made by different people for different purposes, and be mapped to the code 

independently. Moreover, users can even switch among different change sessions (e.g. for 

different tasks). The architecture changes they made will correspondingly be recorded into 

different change sessions, and concurrent modification of the architecture model is potentially 

supported. One challenge to be addressed, however, is managing the relationships (e.g. mutual 

exclusion, dependency) between concurrent change sessions. 

Another possible application based on architecture change model is to visualize the 

changes of each change session. For example, selecting a change session on the left panel of 

Archipelago displays all the architecture elements that are changed in that session in the editor 

panel of Archipelago. Some additional information related with the changes may also be shown, 

such as change time, author, and comments made. Users can then further select what to do with 

each specific change session, such as redo/undo. This feature is especially useful in an 

architecture-centric development environment, where architecture plays a central role in the 

development lifecycle. 
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In essence, the architecture change model makes architecture changes an independent 

artifact. From this perspective, an architecture change model can be shared, analyzed, or reused 

just like some other software artifacts (e.g. requirements specification). For example, an 

architecture change model can be analyzed to see if a specific change session in it induces any 

errors. Or we can reuse a change session by replaying all the included changes to an architecture. 

In this way, people can work concurrently on the same architecture simply by exchanging or 

sharing the associated architecture change model. All these represent potential applications of the 

architecture change model in 1.x-way mapping. 
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