
www.manaraa.com

UNIVERSITY OF CALIFORNIA,
IRVINE

Enhancing Architecture-Implementation Conformance with Change Management and Support
for Behavioral Mapping

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Yongjie Zheng

 Dissertation Committee:
 Professor Richard N. Taylor, Chair
 Professor André van der Hoek

 Assistant Professor James A. Jones

2012

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3516294
Copyright 2012 by ProQuest LLC.

UMI Number: 3516294

www.manaraa.com

© 2012 Yongjie Zheng

www.manaraa.com

ii

DEDICATION

To

Mom and Dad.

www.manaraa.com

iii

TABLE OF CONTENTS

 Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE xi

ABSTRACT OF THE DISSERTATION xiv

1	
 Introduction	
 ..	
 1	

1.1	
 Research	
 Question	
 ..	
 1	

1.2	
 Contribution	
 ..	
 4	

1.3	
 Hypothesis	
 ...	
 6	

1.4	
 Organization	
 of	
 the	
 Dissertation	
 ..	
 8	

2	
 Architecture-­‐Implementation	
 Mapping	
 ..	
 10	

2.1	
 One-­‐Way	
 Mapping	
 ..	
 11	

2.1.1	
 Full	
 Code	
 Generation	
 ...	
 12	

2.1.2	
 Architecture	
 Refinement	
 ...	
 16	

2.1.3	
 Reverse	
 Engineering	
 ..	
 18	

2.1.4	
 Runtime	
 Monitoring	
 ..	
 21	

2.2	
 Two-­‐Way	
 Mapping	
 ...	
 23	

2.2.1	
 Code	
 Generation	
 and	
 Separation	
 ...	
 24	

2.2.2	
 Architecture	
 Frameworks	
 ...	
 28	

2.2.3	
 Unified	
 Representations	
 ..	
 31	

2.2.4	
 Roundtrip	
 Engineering	
 ...	
 33	

2.3	
 Problems	
 ...	
 36	

3	
 Related	
 Work	
 ..	
 39	

3.1	
 Architecture	
 Modeling	
 ..	
 39	

3.1.1	
 Definition	
 of	
 Software	
 Architecture	
 ..	
 39	

3.1.2	
 Architecture	
 Description	
 Languages	
 ..	
 42	

3.1.3	
 Modeling	
 Aspects	
 ..	
 46	

3.2	
 Code	
 Generation	
 ...	
 50	

3.3	
 Architecture-­‐Centric	
 Software	
 Development	
 ...	
 53	

3.3.1	
 Model-­‐Driven	
 Development	
 ...	
 53	

3.3.2	
 Architecture-­‐based	
 Research	
 ..	
 57	

3.4	
 Software	
 Traceability	
 ...	
 60	

3.5	
 Software	
 Change	
 Management	
 ..	
 61	

4	
 Approach	
 ..	
 64	

4.1	
 Design	
 Principles	
 ..	
 64	

www.manaraa.com

iv

4.2	
 Overview	
 ...	
 67	

4.3	
 Code	
 Separation	
 and	
 Integration	
 ..	
 70	

4.3.1	
 Deep	
 Separation	
 ..	
 70	

4.3.2	
 Code	
 Integration	
 ..	
 75	

4.3.3	
 Discussion:	
 Deep	
 Separation	
 vs.	
 Shallow	
 Separation	
 ..	
 78	

4.4	
 Change	
 Management	
 ...	
 81	

4.4.1	
 Architecture	
 Change	
 Model	
 ..	
 81	

4.4.2	
 Architecture-­‐based	
 Code	
 Regeneration	
 ..	
 84	

4.4.3	
 Architecture	
 Change	
 Notification	
 ..	
 86	

4.4.4	
 Discussion:	
 Prevention	
 of	
 Programmer-­‐induced	
 Negative	
 Properties	
 	
 88	

4.5	
 Support	
 for	
 Behavioral	
 Mapping	
 ...	
 90	

4.5.1	
 Architecture	
 Behavioral	
 Modeling	
 in	
 1.x-­‐Way	
 Mapping	
 ..	
 90	

4.5.2	
 Applying	
 Deep	
 Separation	
 to	
 Behavioral	
 Code	
 ..	
 94	

4.6	
 Revisiting	
 Architecture-­‐Implementation	
 Mapping	
 ..	
 98	

5	
 Implementation	
 ..	
 103	

5.1	
 Implementation	
 Environment	
 ...	
 103	

5.1.1	
 Eclipse	
 ...	
 104	

5.1.2	
 ArchStudio	
 4	
 ...	
 107	

5.2	
 Implementation	
 Tasks	
 ..	
 109	

5.2.1	
 State	
 Diagram	
 Editor	
 and	
 Sequence	
 Diagram	
 Editor	
 ...	
 109	

5.2.2	
 Recording	
 Architecture	
 Changes	
 ...	
 113	

5.2.3	
 Change	
 Analysis	
 and	
 Refinement	
 ..	
 116	

5.2.4	
 Code	
 Generation	
 ...	
 118	

5.2.5	
 Sending	
 Change	
 Notifications	
 ...	
 122	

5.3	
 Tool	
 Usage	
 ...	
 124	

5.4	
 Lessons	
 Learned	
 ...	
 126	

5.4.1	
 About	
 Eclipse	
 ...	
 126	

5.4.2	
 About	
 ArchStudio	
 ...	
 128	

6	
 Experiments	
 and	
 Validations	
 ...	
 131	

6.1	
 Objectives	
 ..	
 131	

6.2	
 Evaluation	
 I:	
 Deep	
 Separation	
 of	
 ArchStudio	
 4	
 ..	
 133	

6.2.1	
 Evaluation	
 Method	
 ..	
 134	

6.2.2	
 Results	
 ..	
 137	

6.2.3	
 Threats	
 to	
 Validity	
 ...	
 142	

6.2.4	
 Conclusion	
 ...	
 143	

6.3	
 Evaluation	
 II:	
 Replaying	
 Changes	
 of	
 ACTS	
 ..	
 145	

6.3.1	
 Evaluation	
 Method	
 ..	
 146	

6.3.2	
 Results	
 ..	
 151	

6.3.3	
 Threats	
 to	
 Validity	
 ...	
 153	

6.3.4	
 Conclusion	
 ...	
 154	

6.4	
 Evaluation	
 III:	
 Replaying	
 Changes	
 of	
 1.x-­‐Way	
 Mapping	
 ..	
 156	

6.4.1	
 Evaluation	
 Method	
 ..	
 156	

6.4.2	
 Results	
 ..	
 159	

6.4.3	
 Threats	
 to	
 Validity	
 ...	
 160	

6.4.4	
 Conclusion	
 ...	
 161	

6.5	
 Discussion:	
 Generalization	
 of	
 Results	
 ...	
 162	

7	
 Conclusion	
 ..	
 164	

7.1	
 Summary	
 ...	
 164	

www.manaraa.com

v

7.2	
 Future	
 Work	
 ...	
 166	

7.2.1	
 Remaining	
 Challenges	
 of	
 Architecture-­‐Implementation	
 Mapping	
 ...	
 167	

7.2.2	
 Architecture-­‐based	
 Dynamic	
 Adaptation	
 ..	
 168	

7.2.3	
 Implementation	
 of	
 Product	
 Line	
 Architectures	
 ..	
 169	

7.2.4	
 Advanced	
 Architecture	
 Change	
 Management	
 ...	
 171	

8	
 Reference	
 ..	
 173	

www.manaraa.com

vi

LIST OF FIGURES

 Page

Figure	
 2-­‐1:	
 Reverse	
 engineering	
 diagram	
 excerpted	
 from	
 [22].	
 ..	
 19	

Figure	
 2-­‐2:	
 An	
 example	
 of	
 partial	
 class.	
 ..	
 27	

Figure	
 2-­‐3:	
 An	
 ArchJava	
 example	
 excerpted	
 from	
 [3].	
 ..	
 32	

Figure	
 3-­‐1:	
 xADL	
 schemas	
 and	
 dependencies	
 ...	
 43	

Figure	
 3-­‐2:	
 Different	
 code	
 generation	
 strategies	
 see	
 code	
 differently.	
 ..	
 51	

Figure	
 3-­‐3:	
 Model-­‐driven	
 development.	
 ..	
 54	

Figure	
 3-­‐4:	
 Architecture-­‐based	
 research.	
 ...	
 57	

Figure	
 4-­‐1:	
 An	
 overview	
 of	
 1.x-­‐way	
 architecture-­‐implementation	
 mapping.	
 ...	
 68	

Figure	
 4-­‐2:	
 Rules	
 of	
 deep	
 separation	
 for	
 architecture-­‐prescribed	
 code.	
 ...	
 71	

Figure	
 4-­‐3:	
 Rules	
 of	
 deep	
 separation	
 for	
 user-­‐defined	
 code.	
 ..	
 72	

Figure	
 4-­‐4:	
 Structural	
 architecture	
 of	
 the	
 calculator	
 application.	
 ...	
 73	

Figure	
 4-­‐5:	
 Integrating	
 code	
 by	
 method	
 calls.	
 ..	
 76	

Figure	
 4-­‐6:	
 An	
 example	
 of	
 code	
 integration	
 framework.	
 ...	
 77	

Figure	
 4-­‐7:	
 Architecture	
 changes	
 in	
 1.x-­‐way	
 mapping.	
 ..	
 82	

Figure	
 4-­‐8:	
 Code	
 regeneration	
 mechanisms.	
 ...	
 85	

Figure	
 4-­‐9:	
 Prevention	
 of	
 programmer-­‐induced	
 negative	
 properties.	
 ..	
 89	

Figure	
 4-­‐10:	
 Example	
 of	
 a	
 behavioral	
 architecture	
 definition.	
 ...	
 91	

Figure	
 4-­‐11:	
 Structure	
 of	
 the	
 architecture-­‐prescribed	
 code	
 generated	
 from	
 a	
 state	
 diagram.	
 	
 96	

Figure	
 5-­‐1:	
 The	
 architecture	
 of	
 the	
 Eclipse	
 platform	
 [23].	
 ..	
 105	

Figure	
 5-­‐2:	
 A	
 screenshot	
 of	
 the	
 state	
 diagram	
 editor.	
 ..	
 110	

Figure	
 5-­‐3:	
 A	
 screenshot	
 of	
 the	
 sequence	
 diagram	
 editor.	
 ...	
 111	

Figure	
 5-­‐4:	
 Architecture	
 change	
 recording	
 in	
 the	
 Archipelago	
 modeling	
 environment.	
 	
 114	

Figure	
 5-­‐5:	
 Code	
 generation	
 in	
 1.x-­‐way	
 mapping.	
 ...	
 119	

Figure	
 5-­‐6:	
 A	
 configuration	
 panel	
 that	
 tunes	
 the	
 mapping	
 process.	
 ...	
 120	

Figure	
 5-­‐7:	
 An	
 example	
 of	
 architecture	
 change	
 notifications.	
 ...	
 123	

Figure	
 6-­‐1:	
 ArchStudio	
 4's	
 architecture.	
 ..	
 135	

Figure	
 6-­‐2:	
 Replaying	
 environment.	
 ..	
 147	

Figure	
 6-­‐3:	
 A	
 screenshot	
 of	
 development	
 history	
 in	
 Subclipse.	
 ..	
 148	

Figure	
 6-­‐4:	
 Change	
 details	
 shown	
 in	
 Trac.	
 ..	
 148	

www.manaraa.com

vii

Figure	
 6-­‐5:	
 Recovered	
 architecture	
 milestones.	
 ...	
 150	

Figure	
 6-­‐6:	
 Architecture	
 diagrams	
 of	
 1.x-­‐way	
 mapping.	
 ..	
 159	

www.manaraa.com

viii

LIST OF TABLES

 Page

Table	
 2-­‐1:	
 Architecture-­‐implementation	
 mapping.	
 ...	
 11	

Table	
 4-­‐1:	
 A	
 comparison	
 of	
 architecture-­‐implementation	
 mapping	
 approaches.	
 ...	
 99	

Table	
 6-­‐1:	
 Results	
 of	
 Evaluation	
 I.	
 ..	
 138	

Table	
 6-­‐2:	
 Results	
 of	
 Evaluation	
 II.	
 ...	
 151	

Table	
 6-­‐3:	
 Results	
 of	
 Evaluation	
 III.	
 ...	
 160	

www.manaraa.com

ix

ACKNOWLEDGMENTS

First of all, I would like to thank Department of Informatics and Institute for Software Research
at University of California, Irvine for providing me a wonderful environment and research
resources. I have really enjoyed working on such a great platform. Therefore, I would like to
express my gratitude to all the staff in these two organizations, especially Debi, Kiana, Kari,
Marty, Dick, David, and Andre. Thank you all for helping me in the past years!

Special thanks goes to my advisor, Professor Richard N. Taylor, who recruited me to a research
group that I have been very proud of and let me work on interesting projects. I thank Dick from
the bottom of my heart for offering me all the support, guidance, and resources I needed to
complete my Ph.D. study. In particular, I really appreciate the trust and space that Dick gave me
in research, and always pointing me to the directions that later on I felt very excited about. These
significantly fostered the development of my dissertation work. Last, but not least, I thank Dick
for inviting me to a delicious homemade Thanksgiving dinner. Yes, that was unforgettable!

I would like to thank my dissertation committee members, Professor André van der Hoek and
Professor James A. Jones. Thank you for spending time reading my survey paper, topic proposal,
and dissertation, and giving me helpful feedback. I always think the time we spent together in my
candidacy exam and topic defense is one of my most valuable experiences during my PhD study.
Discussing my research with world-class researchers in two-hour period, in my eyes, is one of
most exciting things.

In addition, a thank you to Professor Donald J Patterson and Professor Lizhi Sun, who both
joined my candidacy committee. Thank you for your time and comments! What you did really
meant a lot to me. I also want to thank Professor Nenad Medvidović of University of Southern
California. I met with Neno several times, and he has been helpful to me all the time.

Many thanks to Eric Dashofy. Eric reviewed my ICSE paper, topic proposal, NSF proposal, and
gave me challenging questions that I had to think over before I could respond. Those long
conversations we once had by email not only made many ideas and concepts clear, but also
helped to get my research ready to face a wider research community. Particularly, I want to thank
Eric for developing ArchStudio 4, a wonderful system and platform based on which my
dissertation work was done. Thank you, Eric, for everything!

Hazel Asuncion and Scott Hendrickson gave me many help when I first came to UC Irvine.
Hazel also kindly answered all my questions regarding her ACTS project during the evaluation
of my dissertation work. I would like to use this opportunity to express my gratitude to both of
them for being such great group mates to me.

I would like to extend my thanks to Justin Erenkrantz, Michael Gorlick, Alegria Baquero, Kyle
Strasser, Leyna Cotran, Erik Trainer, Rosalva Gallardo Valencia, HyeJung Choi, Derek Pfister,
Francisco Servant, and Fang Deng. Justin, Michael, Alegria, and I worked together on the
CREST demo project, which finally generated some impressive results. Kyle is my constant
office mate, who comes to the office every day as I do and patiently answered my questions

www.manaraa.com

x

ranging from English to places to buy eyeglasses. Leyna gave a guest lecture to an undergraduate
class that I once taught, and I really appreciate the time and effort she spent on that. Erik spent a
whole morning in helping me record the demo video of my developed tool. His charming voice
made the video absolutely better, and I know that was far more than the lunch I treated him. In
addition, HyeJung, Derek, and I took many classes together and we worked together on several
class projects. Paco, Fang, and I attended ASE 2011 together, and we had a great time there.
Thank you, everyone!

Finally, I give my most sincere gratitude to my family. To my wife Yan and my daughter Janie, I
love you so much and thank you for bringing me so much pleasure. To Dad and Mom, who have
done so many things for me unconditionally, words are not enough to express my gratitude.
Without your support, I do not think I am still on my way to pursuit my academic goal. I would
also like to thank my brother Yongsheng Zheng, my sister Dongmei Zheng, my uncle Shubiao
Liu, my cousin Gang Liu, and their families. I miss all of you in this big family. I love you all!

www.manaraa.com

xi

CURRICULUM VITAE

Yongjie Zheng

Field of Study

Software engineering, software architecture and design, architecture-implementation mapping,
architecture-centric software development.

Education

2012 Ph.D. in Information and Computer Science

University of California, Irvine

2005-2007 Department of Computer and Information Science and Engineering

University of Florida

2005 M.Phil. in Department of Computing

Hong Kong Polytechnic University

2000 B.Eng. in Department of Computer Science and Technology

Tsinghua University, Beijing, China

Professional Experience

2008 Summer Intern,

Novelics, Inc.
Aliso Viejo, California

2007 Summer Intern

Innovative Scheduling, Inc.
Gainesville, Florida

2001-2003 Software Engineer

IBM China Software Development Lab
Shanghai, China

Teaching

Instructor. INF 111: Software Tools and Methods (21 students) - Summer 2010.

www.manaraa.com

xii

Teaching Assistant. INF 123: Software Architectures, Distributed Systems, and Interoperability
– Spring 2009; INF 117: Project in Software Systems Design – Winter 2009; INF 121: Software
Design I – Fall 2008.

Reader. INF 117: Project in Software Systems Design – Spring 2008; ICS 52: Introduction to
Software Engineering – Winter 2008; INF 113: Requirement Analysis and Engineering – Fall
2007.

Publications

Yongjie Zheng and Richard N. Taylor. "Enhancing Architecture-Implementation Conformance
with Change Management and Support for Behavioral Mapping", Proceedings of ICSE 2012:
34th International Conference on Software Engineering, June 2-9, 2012, Zurich, Switzerland. (to
appear).

Yongjie Zheng and Richard N. Taylor. "xMapper: An Architecture-Implementation Mapping
Tool", Informal Research Demonstration, Proceedings of ICSE 2012: 34th International
Conference on Software Engineering, June 2-9, 2012, Zurich, Switzerland. (to appear).

Yongjie Zheng and Richard N. Taylor. "Taming Changes With 1.x-Way Architecture-
Implementation Mapping", Short Paper, Proceedings of ASE 2011: 26th IEEE/ACM
International Conference On Automated Software Engineering, November 6–12, 2011,
Lawrence, Kansas.

Yongjie Zheng. "1.x-Way Architecture-Implementation Mapping", Doctoral Symposium,
Proceedings of ICSE 2011: 33rd International Conference on Software Engineering, May 21-28,
2011, Honolulu, Hawaii.

Yongjie Zheng and Richard N. Taylor. "A Rationalization of Confusion, Challenges, and
Techniques in Model-Based Software Development", ISR Technical Report UCI-ISR-11-5,
August 2011.

Yongjie Zheng and Alvin T.S. Chan. "MobiGATE: A Mobile Computing Middleware for the
Active Deployment of Transport Services", IEEE Transactions on Software Engineering, Jan
2006, vol. 32, no. 1, pp 35-50.

Yongjie Zheng, Alvin T.S. Chan, and Grace Ngai. "Applying Coordination for Service
Adaptation in a Mobile Computing Environment", IEEE Internet Computing, Sep/Oct 2006, pp.
61-67, vol. 10, no. 5, IEEE.

Yongjie Zheng, Alvin T.S. Chan, and Grace Ngai. "MCL: A MobiGATE Coordination Language
for Highly Adaptive and Reconfigurable Mobile Middleware", Software Practice and
Experience, special issue on Auto-adaptive and Reconfigurable Systems, 36(11-12), pp1355-
1380, 2006.

www.manaraa.com

xiii

Yongjie Zheng and Alvin T.S. Chan. "Coordinated Composition of Services for Adaptive Mobile
Middleware", Proc. of the 11th IEEE Symposium on Computers and Communications (ISCC
2006), June 26-29, 2006, Pula, Calkiari, Sardinia, Italy.

Yongjie Zheng and Alvin T.S. Chan. "Stream Composition for Highly Adaptive and
Reconfigurable Mobile Middleware", Proceedings of 28th IEEE Annual International Computer
Software and Applications Conference (COMPSAC 2004), IEEE Press, 28-30 Sep 2004, Hong
Kong.

Yongjie Zheng and Alvin T.S. Chan. "MobiGATE: A Mobile Gateway Proxy for the Active
Deployment of Transport Entities", Proceedings of the 2004 International Conference on Parallel
Processing (ICPP 2004), 15-18 Aug 2004, Montreal, Quebec, Canada, IEEE.

Yongjie Zheng, Yang Wang, Hanjian Fu, and Drew Schechter. "IBM CrossWorlds
Collaborations as a Web Service", IBM WebSphere Developer Technical Journal, Aug 2002.

www.manaraa.com

xiv

ABSTRACT OF THE DISSERTATION

Enhancing Architecture-Implementation Conformance with Change Management and Support
for Behavioral Mapping

By

Yongjie Zheng

Doctor of Philosophy in Information and Computer Science

 University of California, Irvine, 2012

Professor Richard N. Taylor, Chair

 Software architecture plays an increasingly important role in complex software development.

Its further application, however, is challenged by the fact that software architecture, over time, is

often found not conformant to its implementation. This is usually caused by frequent

development changes made to both artifacts. Against this background, how to automatically

maintain architecture-implementation conformance becomes a significant research question.

Without this issue resolved, architecture centrality can only exist in ideal situations where

developers are highly disciplined or the system under development is relatively simple.

Architecture-implementation mapping is a process that specifically addresses the conformance

issue mentioned above. Existing approaches can be roughly classified as one-way mapping and

two-way mapping depending on which artifacts can be manually changed. None of them,

however, provides a complete solution in the sense that mapping of changes is weakly supported

and most approaches can support structural conformance only. In this research study, a new

mapping approach called 1.x-way mapping is developed. Its name comes from the fact that it

only allows manual changes to be initiated from the architecture (“1”) and a separated portion of

www.manaraa.com

xv

the code (“.x”). 1.x-way mapping advances the area of architecture-implementation mapping

with the capability of preventing mistaken changes of architecture-prescribed code by

programmers, and supporting automatic mapping of structural and behavioral architecture

changes to code.

1.x-way mapping consists of four core mechanisms: a deep separation mechanism, an

architecture change model, architecture-based code regeneration, and architecture change

notifications. In a nutshell, the architecture-prescribed code and user-defined code of each

architecture component are separated into two independent elements. Architecture-prescribed

code can only be updated through code regeneration, and programmers’ manual changes are

limited to user-defined code. All the architecture changes are explicitly recorded and classified in

an architecture change model. They are automatically mapped to code through the regeneration

of architecture-prescribed code and the delivery of change notifications to user-defined code if

necessary. Behavioral architecture-implementation mapping is enabled during this process with

system dynamics modeled in a form that can be automatically translated into architecture-

prescribed code that cannot be contaminated when programmers work on user-defined code.

Empirical evaluation of the 1.x-way mapping approach consists of three case studies based on

ArchStudio 4, an Eclipse-based architecture development environment where 1.x-way mapping

is implemented and integrated. In the first case study, we refactored the code of ArchStudio with

the deep separation mechanism. In the next two case studies, we re-did, or replayed, changes

made to the architecture and code of ArchStudio in two research projects with the help of our

new mapping approach. The first project built and integrated an architecture-centric traceability

tool in ArchStudio, and the involved changes were structure-oriented only. The second project

was the development of the 1.x-way mapping tool, where both structural and behavioral changes

www.manaraa.com

xvi

were made to the ArchStudio architecture and code. The purpose of the evaluation is to

determine if the 1.x-way mapping approach is applicable to real software development and its

features are effective.

www.manaraa.com

1

1 Introduction

This chapter highlights the importance and challenges of maintaining architecture-

implementation conformance in the development of complex software systems. Based on the

desire to address these challenges, a new architecture-implementation mapping approach is

presented as the contribution of this research study. The research hypothesis and corresponding

validation methods are also specified. The organization of the dissertation is given at the end of

the chapter as further guidance to the reader.

1.1 Research Question

The increasing complexity of software systems makes continuously improving software

productivity and quality difficult as long as it remains based on traditional code-centric

development [16]. Meanwhile, software architecture—the set of principal design decisions made

about a software system [143]–plays an increasingly important role in software development. To

the extent this increase is present, it is due to the increased maturity of related technologies, such

as architecture description languages [36, 47, 85, 87], architecture styles [19, 49, 142], and

domain-specific/product line software architectures [111, 146]. Architecture-centric development

represents the next logical step [11, 100, 141, 154]. Different from traditional software

engineering where software architecture is simply seen as a documentation artifact that is

peripheral to code development, architecture-centric development emphasizes that software

architecture should play an essential role throughout the product lifecycle. It represents a

paradigm where software architecture is used not only horizontally—to describe [54] and

analyze [71]—but also vertically to synthesize [18], integrate [40], and evolve [114] software

systems.

www.manaraa.com

2

Several different forms of architecture-centric development have emerged in recent years,

including model-driven development [52] and architecture-based research [58, 113]. On the one

hand, these approaches further reveal the benefits of architecture centrality in software

development. On the other hand, none of them dominates “the practice.” A primary reason is that

the architecture of a software system, over time, is often found not conformant to its

implementation [129]. In other words, a solution to a central piece of architecture-centric

development, architecture-implementation mapping [3, 42, 103, 123], is still missing.

Architecture-implementation mapping is a process of converting architecture specifications to

and from source code with the goal of maintaining their conformance with respect to certain

criteria. There are a number of architecture-implementation mapping approaches, such as

architecture frameworks [88] and code generation [69], but most of them are deficient in the

sense that change mapping and behavioral conformance are not supported. As a result, software

developers often have to manually maintain architecture-implementation conformance, which is

not only time consuming, but also error prone. Generally speaking, software architecture can

easily become out of date if the cost of maintaining its conformance to code significantly

exceeds that of working on code directly.

The research question that this study addresses is how to automatically maintain the

conformance between software architecture and source code during software development. By

automatically, it is meant that both the architect and programmers can solely focus on their own

artifacts without worrying about the inconsistency that their development work may cause. Note

that programmers’ manual work on the code (e.g. to implement a new architecture element) is

still acceptable, given that automatic programming [10, 48] is not a practical approach yet at this

point. Conformance in the above statement means that not only the source code does not lose

www.manaraa.com

3

properties of the architecture, but also that no new properties about the architecture can be

inferred from the code. In other words, we require the source code to be a faithful interpretation

[98] of the architecture. Depending on what information the architecture may contain, the

specific criteria of conformance could be communication integrity [3], relative substitutability

[56], and so on.

Automatic maintenance of architecture-implementation conformance directly determines

the degree to which software architecture can be used in development to improve software

productivity and quality. In particular, a complete resolution to this research question is not yet

available at this point. We believe it is primarily due to the following significant challenges that

this process involves:

• Software architecture and source code are located at separated abstraction levels and

are usually expressed using different conceptual constructs [124]. Many architecture

constructs, such as architecture components and connectors, often do not have direct

counterparts in the programming paradigm. What this means in the context of

architecture-implementation mapping is that the mapping of code back to architecture

is essentially an activity of abstraction, which is hard to be fully automated (i.e.

machine-based abstraction).

• Both software architecture and source code may be under frequent changes during

software development [117]. Many of these changes endanger the conformance

established between the architecture and code. In particular, no explicit change

management mechanism is provided to either regulate or analyze changes that are

made to the two types of artifacts. As a result, not only how to map changes between

software architecture and code forms a challenge, but also whether or not to do so

www.manaraa.com

4

becomes a problem. This is especially the case considering that some changes, such

as modifications of implementation details, may or may not affect architecture-

implementation conformance.

• Software architecture encompasses many aspects of the system under development,

including structure, behavior, and non-functional properties. In contrast, most existing

architecture-implementation mapping approaches are structure-oriented only. This is

mainly because architecture behavioral specification (e.g. UML’s sequence diagrams)

is not complete enough to generate code from, and its corresponding code is

inevitably mixed with user-defined dynamic details [140]. Protection of architecture-

prescribed code becomes extremely difficult in this situation. With respect to non-

functional properties, they are not considered in this study as architectural modeling

of these properties is not fully supported by the existing technology [26].

Overall, a successful solution of maintaining architecture-implementation conformance

must be able to convert architecture to and from source code when development changes occur

to either of them. It must do so in an intelligent way, meaning taking different actions for

different types of changes. In particular, the conversion process should be able to span across the

abstraction gap between the two artifacts [109]. In most cases, this requires the involvement of

code generation both structurally and behaviorally.

1.2 Contribution

In this research study, we present a new architecture-implementation mapping approach

called 1.x-way mapping. Different from existing mapping approaches, which are classified as

one-way mapping and two-way mapping depending on which artifacts can be manually changed,

1.x-way mapping only allows changes to be initiated in the architecture (“1”) and a separated

www.manaraa.com

5

portion of the code (“.x”). Architecture-prescribed code is updated solely through code

generation. Overall, 1.x-way mapping consists of the following four core mechanisms:

• Deep separation. 1.x-way mapping separates architecture-prescribed code and user-

defined code of each architecture component into two independent language elements

(e.g. classes), and relies on an explicit program composition mechanism (e.g. method

calls) to integrate the code. This is different from existing code separation

approaches, such as filling-in-the-blanks and subclassing, where separated code is

implicitly coupled and integrated by some built-in language relationship (same class,

inheritance, etc.). Deep separation has several advantages, including comprehensive

code protection, enforcement of architecture centrality, and mutual independence of

separated code.

• An architecture change model. 1.x-way mapping explicitly maintains an architecture

change model that records all the development changes made to the architecture. The

architecture change model provides information that is necessary for the mapping of

architecture to code, such as the element that is changed, the type of changes, and

whether or not these change have been mapped to code.

• Architecture-based code regeneration. 1.x-way mapping updates architecture-

prescribed code through code regeneration. It only regenerates code for modified

components. For each modified component, complete regeneration is enforced. This

special design not only protects the integrity of component implementation, but also

reduces the amount of code regeneration.

• Architecture change notification. An architecture change notification contains

information describing what element is changed in the architecture. It is sent to user-

www.manaraa.com

6

defined code when certain architecture changes occur. In this way, programmers can

make corresponding changes to their code and still keep the conformance between the

architecture and source code.

Specifically, 1.x-way mapping works as follows. Architecture-prescribed code and user-

defined details of each architecture component are decoupled into two independent program

elements (e.g. classes). Manual code changes are limited to user-defined code, and thus, cannot

contaminate the architecture-prescribed code. All the architecture changes are recorded and

classified into the architecture change model. Most of these changes can be automatically

mapped to code through the architecture-based code regeneration mechanism. For architecture

changes that may require modifications to user-defined code, architecture change notifications

are also generated and sent across the separation boundary to user-defined code, describing what

element is changed in the architecture. In particular, 1.x-way mapping can support the behavioral

architecture-implementation mapping with system dynamics modeled in a form that can be

automatically translated into code in a way that maintains code separation.

1.3 Hypothesis

The hypothesis of this study is that 1.x-way mapping can be applied in the development

of a realistic system to prevent the architecture-prescribed code from being accidentally or

intentionally changed by programmers, and support automatic mapping of structural and

behavioral architecture changes to code. 1.x-way mapping and particularly its code separation

mechanism should be applicable to the implementation of a real program of significant

complexity. 1.x-way mapping must also be able to automatically map specific kinds of

architecture changes to code in specific ways. Note that the manual changes to user-defined code

for logic completion are not considered as a violation of the hypothesis. Instead, we still consider

www.manaraa.com

7

1.x-way mapping as being able to support automatic change mapping as long as it can

automatically update corresponding architecture-prescribed code and send change notifications

to user-defined code when necessary. Significantly, all the above features are applicable to both

structural and behavioral architecture specifications. In the current implementation of 1.x-way

mapping, behavioral architecture is modeled in the form of UML-like sequence diagrams and

state diagrams. Support for other forms of behavioral specifications are pending on the

development of corresponding modeling and code generation technologies. This is specifically

discussed in Chapter 4. Finally, limitations apply of course: non-functional properties are not

considered in this study.

To validate the hypothesis, we perform case studies with a pre-existing software system,

ArchStudio 4 [39], a Eclipse-based architecture development environment that is being used at

UC Irvine, in several companies, and at several universities. A primary benefit of exercising 1.x-

way mapping with ArchStudio 4 is that it has been extended in several independent research

projects, where significant changes were made to its architecture and code. Therefore, we can

replay, or re-do some of these changes with the help of our 1.x-way mapping approach. The

purpose is to determine if 1.x-way mapping (a) can be applied to a real software system to

protect its architecture-prescribed code during the development, (b) automatically map

architecture changes to the code, and (c) provide support for both structural and behavioral

architecture specifications. Applicability and effectiveness are the two dimensions that we will

be specifically focused on during the evaluation.

www.manaraa.com

8

1.4 Organization of the Dissertation

Chapter 1 describes the research question, contribution, and hypothesis of this study. It

presents the significance and challenges of maintaining the conformance between software

architecture and code during the development.

Chapter 2 provides a classification of existing architecture-implementation mapping

approaches. It specifically reviews some representative approaches, with their limitations

highlighted. This forms an important motivation of this research study.

Chapter 3 introduces related technologies of 1.x-way mapping, including architecture-

centric software development, architecture modeling, code generation, and software change

management. These technologies together form the application context of 1.x-way mapping, and

many of their pragmatic techniques are reused in the development of 1.x-way mapping. For

example, a template-based code generation mechanism is applied in 1.x-way mapping to build its

code generator. Thus, it is necessary to give an introduction to these approaches before we

elaborate the 1.x-way mapping approach.

Chapter 4 is devoted to the specifics of 1.x-way mapping. It starts from design principles

and an overview of the approach, and focuses on the four core mechanisms of 1.x-way mapping:

a code separation mechanism, an architecture change model, architecture-based code

regeneration, and architecture change notification. Support for the behavioral architecture

specifications is also discussed from the perspective of behavioral modeling and applying code

separation to the behavioral code. At the end of the chapter, a comparison of 1.x-way mapping

and the existing mapping approaches introduced in Chapter 2 is provided. This highlights the

new features of 1.x-way mapping.

www.manaraa.com

9

Chapter 5 focuses on the implementation of 1.x-way mapping. It introduces the

implementation environment, specific tasks, tool usage, and lessons learned from the

implementation experience. A number of issues are specifically discussed in this chapter, such as

how to deal with removed elements during architecture change recording, the analysis and

refinement of architecture changes, and the correlation between the behavioral architecture

elements and structural elements during code generation.

Chapter 6 is about the validation of 1.x-way mapping. The validation work is deeply

rooted in the hypothesis of this study. It consists of three case studies, which are meant to

evaluate different aspects of 1.x-way mapping. For each of these case studies, the evaluation

method, collected results, threats to validity, and conclusion are presented. At the end of chapter,

it is discussed why we believe the results collected from our evaluation can be generalized to the

development of other real software systems.

Chapter 7 offers conclusion to this study. It also points out some directions for the future

research activities on this topic. Such work is necessary to make 1.x-way mapping more

complete and effective in terms of maintaining architecture-implementation conformance. In the

long term, these activities have the potential to make architecture-centric development an

approach that can be widely adopted in the development of complex software systems.

www.manaraa.com

10

2 Architecture-Implementation Mapping

Architecture-implementation mapping is a process of converting architecture

specifications to and from source code with the goal of maintaining their conformance with

respective to certain criteria. A number of approaches have been developed to automate this

process. This chapter provides a classification of existing architecture-implementation mapping

approaches, and specifically reviews some representative approaches of each category. At the

end of the chapter, limitations of existing approaches are summarized to highlight the motivation

of this research study.

Current architecture-implementation mapping approaches either rely on after-the-fact

consistency checking to detect any inconsistency (correct-by-detection), or apply technologies

like code generation to avoid inconsistency from the very beginning (correct-by-construction).

Another perspective with which to look at existing approaches is assessing which artifacts can be

manually changed during software development. From this perspective, there are approaches of

one-way mapping and two-way mapping. Table 2-1 presents a classification of these approaches.

The italicized words represent instances of each approach. 1.x-way mapping is also shown in the

table as a preview, although detailed descriptions about it are given in Chapter 4.

Note that correct-by-detection approaches usually detect the architecture-implementation

inconsistency by extracting or inducing the architecture from the code, and comparing the

obtained architecture with the prescriptive architecture. They assume the relative constancy of

software architecture, since source code is the only focus during inconsistency checking. This

explains why there is no two-way mapping of correct-by-detection in the table.

www.manaraa.com

11

 Correct-by-construction Correct-by-detection

One-way mapping

1) Full code generation

Domain-specific MDD [79],

DSSA [111]

2) Architecture refinement

SADL [98]

1) Reverse engineering

Reflexion model [103]

2) Runtime monitoring

DiscoTect [153], ArchSync [42],

Pattern-Lint [123]

Two-way mapping

1) Code generation and separation

EMF [135], DiaSpec [20]

2) Architecture frameworks

myx.fw [34], UniCon [128]

3) Unifying descriptions

ArchJava [3], Archface [148]

4) Roundtrip engineering

Fujaba [107]

 1.x-way mapping

Table 2-1: Architecture-implementation mapping.

2.1 One-Way Mapping

One-way architecture-implementation mapping mandates that all manual changes begin

from either the architecture or the code (but not both), with the other artifact automatically

updated by a mapping approach. In the category of correct-by-construction, the architecture can

be manually changed and the mapping is from the architecture to code. The technologies of full

code generation and architecture refinement are mostly used for the mapping purpose. In

contrast, the mapping is usually from the code to architecture in correct-by-detection and the

architecture is assumed to be constant. Reverse engineering and runtime monitoring are two

typical technologies that support this reverse mapping process.

www.manaraa.com

12

2.1.1 Full	
 Code	
 Generation	

Full code generation is a representative approach of correct-by-construction. It is

extensively used in some Model-Driven Development (MDD) approaches, which aim to make

architecture models compilable and executable, and become the main artifacts of development.

In essence, what full code generation is trying to do is promote software development to the level

of software architecture, so that source code editing can be completely avoided. This faces the

challenge of bridging the abstraction gap. On the one hand, software models in MDD must have

sufficient detail to enable complete program generation; on the other hand, the models also need

to be, and stay, simpler than the corresponding software programs created during this process. As

a result of this challenge, full code generation is currently only applicable in some highly

specialized domains with the help of domain-specific modeling languages [79], code generators

[25], and software architecture [64, 111].

Domain-specific MDD. Domain specificity relates to the applicability of an approach to

different domains. It classifies MDD into generic and domain-specific approaches. Generic

MDD approaches such as Model Driven Architecture (MDA) [81] use a domain-independent

vocabulary and mechanism that are extensible enough to be adapted to different application

areas. This is specifically introduced in Section 3.3. In contrast, domain-specific MDD is closely

related with the process of domain engineering, whose purpose is to develop domain artifacts

that may be used (and reused) in developing applications for a given domain. Examples of

reusable domain artifacts in domain-specific MDD include domain-specific languages (DSLs)

[137] and application generators [25].

A DSL adopts representation formalisms and modeling constructs of established

engineering disciplines – there is no need to learn yet another modeling language. It offers highly

www.manaraa.com

13

efficient constructs to capture design requirements and constraints. Compared with a general

modeling language, DSL is more expressive and therefore tackles complexity better, making

software development easier and more convenient. Most importantly, DSLs raise the level of

abstraction and together with domain-specific generators, can automate the creation of high-

quality code. The primary difficulty with DSLs, however, is that each language needs its own set

of tools. These tools will need to evolve as the domain evolves. Building and evolving these

tools using manual techniques can be expensive.

Application generators are tools for creating application programs from the specifications

that capture domain variations [24]. In particular, application generators are usually used for the

development of a whole application family, not just a single application. Examples include Bison

[60] and LEX [43] that have been widely used in the program compiler area. The working

process of an application generator is as follows. The system analyst and system designer build

specific applications, while the domain analyst and the domain designer build the application

generators used by the system designers. The domain analyst specifies the requirements of an

application generator for a range of problems. The domain designer takes these specifications

and implements them in a generator. Similarly, the system designer takes the system

specification from the system analyst and uses the produced application generator to finally

generate applications for customers. To change or modify the product, the system analyst simply

changes the system specification and asks the system designer to regenerate the software. In

particular, generated programs do not have to be directly modified.

Domain-specific MDD has been successfully applied to databases, user interfaces and

program compliers. However, there are two important factors that limit domain-specific MDD

from being widely used in many application areas. First, the use of application generators has a

www.manaraa.com

14

very high requirement on the maturity of an application domain. They are only applicable in

those limited situations where the domain is so thoroughly understood and bounded that

generation is feasible. In addition, application generators and DSLs are difficult to build. They

require expert knowledge and skill in both the application domain and building parsers and

language translators. In general, the development costs of application generators can be

considerably more than the development of an individual application, and must be compared

with the long-term benefits of reuse.

DSSA. Domain-specific software architecture (DSSA) promotes the reuse of domain

knowledge to a high level of abstraction, and provides a new composition mechanism since

software component assembly requires much higher levels of adaptation than the assembly of

physical components. A DSSA comprises (1) a reference architecture, which describes a general

computational framework for a significant domain of applications; (2) a component library,

which contains reusable chunks of domain expertise; (3) an application configuration method for

selecting and configuring components within the architecture to meet particular application

requirements [143]. As far as the mapping of architecture to implementation is concerned, DSSA

is favorable in the following three aspects.

First, the reference architecture in DSSA serves as a foundation based on which a specific

architecture could be created through architecture specialization. In other words, the reference

architecture raises the level of software reuse to architectural abstractions, and thus, software

production is increased.

Second, the library of reusable components in DSSA simplifies architecture

implementation to the process of component composition [30]. Significantly, the use of reference

www.manaraa.com

15

architecture reduces component mismatch [55] and simplifies the management of supplier

relationships by describing the contexts in which components operate.

Finally, the associated configuration method of DSSA provides potentials for the

generative software development, which automatically generates a software system from its

requirements specification through the assembly of reusable components. One possible way to

select and configure components based on requirements is suggested as follows [77]: the

functional requirements are mainly used to identify required components, while non-functional

requirements are used to partition components, to select components from alternative ones with

the same function, or to select types of connectors between components.

A representative example of applying DSSA techniques in software development practice

is the use of the Koala model and architecture description language to create a family of

television products in Philips [111]. In essence, Koala is a combination of component models

and architecture description languages to deal with product populations. The Koala component

model emphasizes context independence through the separation of communication from

computation in component development. By this means, different combinations of reusable

components can be made for different products. The Koala language extends the Darwin ADL

[86] to support the addition of modules between components and a diversity interface

mechanism. In particular, the reusable components are parameterized over all configuration-

specific information.

It is important to note that the process of developing DSSA could be much more

expensive than developing an individual system, and often needs a close cooperation between

domain experts and experienced application engineers. It is for this reason that the creation of a

DSSA for a domain should be carefully considered based on the evaluation of the expected

www.manaraa.com

16

savings against its building cost. In general, DSSA is mostly used in the development of product-

line, or family of applications.

2.1.2 Architecture	
 Refinement	

Architecture refinement is the process of mapping an abstract architecture into a lower

level architecture that is intended to implement it. It is usually used in the construction of an

architecture hierarchy that describes a large software system. In general, an abstract architecture

is smaller and easier to understand; a concrete architecture reflects more implementation

concerns [12, 90].

A traditional approach to mapping architectures at different levels in a design hierarchy is

taken by Rapide [85] through the use of architecture simulation and event pattern mapping. Each

architecture instance is associated with an event-based execution model, and the simulation of

architecture generates a partially ordered set of events (posets). The predefined event pattern

mappings then map posets of events in one architecture into posets in another, based on which

the consistency of the two architectures is checked. There are two important limitations about the

Rapide approach. First of all, event pattern mappings are defined at the level of architecture

instances. This prevents them from being reused by other systems (architecture instances).

Second, the consistency check in Rapide only emphasizes functional conformance. However,

there may be properties other than behavior equivalence that need to be preserved in the concrete

architecture.

Style-based architecture refinement [56] takes a step further along the above-mentioned

two aspects, and transforms an abstract architecture into a concrete architecture through a series

of small refinements, each of which involves the application of a set of transformation rules. In

particular, the rules are defined between architecture styles, a named collection of architectural

www.manaraa.com

17

design decisions that includes a set of constraints put on development to elicit beneficial

properties. It permits creation and verification of rules to be done by style specialists, while

allowing system designers to simply reuse the result without proof. Another important property

of style-based refinement is that it enforces a stronger correctness criterion than functional

conformance in the refinement process. In essence, this is necessary because software

architecture, as a set of principal design decisions, characterizes multiple aspects of a system,

including functional, structural, interaction, and non-functional concerns.

In general, techniques that apply at the level of styles are much more powerful than

techniques that apply to instances. This is because the demonstration can be performed once for

the styles and then reused many times for instances of those styles. The flip side of the coin is

that sometimes it is difficult to build or prove something that works for every instance of a style.

David Garlan addresses this problem in their style-based refinement approach by identifying

subsets of the systems in a given style, so called substyles, and defining specialized refinements

for each substyle, instead of the whole style. This is argued as being more close to what

engineers actually do when they implement architectural designs. The primary challenge,

however, is that how to identify a suitable substyles for the refinement definition.

A special requirement on architecture refinement is that the process must be correctness-

preserving with respect to some criterion. Simply speaking, if the original architecture has some

property of concern, the refinement must exactly preserve the property in the derived

architecture. A criterion that is mostly seen during architecture refinement is communication

integrity. That is, concrete architecture components only communicate with the components they

are connected to in the abstract architecture. This criterion essentially emphasizes the

preservation of structural architecture decisions in the refinement process. Another more flexible

www.manaraa.com

18

criterion used in a style-based refinement approach is relative substitutability, which means the

concrete architecture must be conformable to the abstract architecture with respect to a set of

properties of interest. These properties could be performance, security, or any other system

concern. Strong or weak, the proof of refinement correctness is never an easy thing to do given

that manual formal reasoning is heavily involved. This is an important reason that most style-

based refinement approaches assume the existence of pre-proved refinement patterns, and

emphasize the definition of refinement at the reusable style level.

The architecture refinement approach has been successfully used to design an

architecture for an operational power control system implemented in 200,000 lines of

FORTRAN 77 code [98]. The resulting system has a reference architecture at two levels of

detail: the abstract architecture was in a dataflow style, and the concrete architecture was a

combination of a call-return style, a shared memory style, and a special process synchronization

style. Significantly, the concrete architecture is correct with respect to the abstract architecture.

2.1.3 Reverse	
 Engineering	

Reverse engineering is the process of creating higher-level abstractions from source code

that are less implementation-dependent [22]. It analyzes a subject system to identify the system’s

components and their interrelationships, and create representations of the system in another form

or at a higher level of abstraction. In general, reverse engineering does not involve changing the

subject system. It is a process of examination not change or replication. Figure 2-1 clearly shows

how reverse engineering is related with other software development activities, such as forward

engineering, reengineering, and restructuring (i.e. refactoring).

www.manaraa.com

19

Figure 2-1: Reverse engineering diagram excerpted from [22].

When applied to maintain architecture-implementation conformance, reverse engineering

is reduced to the activity of design recovery shown in the figure and represents an after-the-fact

detection technique. It abstracts source models from modified implementations, and compares

the original source model with the generated one either to recover lost information or detect side

effects [15]. This usually happens during software maintenance, when the system’s maintainers,

not its designers, must expend many resources to examine and learn the system. In this context,

reverse engineering can help them understand the system and make appropriate changes. Note

that reverse engineering can be expensive for complex systems; moreover, it is hard to guarantee

www.manaraa.com

20

that the generated model captures the same aspects that the original source model contains, since

they may represent two different abstractions of the same implementation.

Reflexion model. A typical example of maintaining architecture-implementation

conformance through reverse engineering is the software reflexion model technique [103]. It is

used to produce a high-level structure model qualified for system reasoning. Specifically, an

engineer defines a high-level model of interest, extracts a source model (such as a call graph)

from the source code, and defines a mapping between the two models. A software reflexion

model is then computed to determine where the engineer’s high-level model does or does not

agree with the source model. In essence, a reflexion model summarizes a source model of a

software system from the viewpoint of a particular high-level model.

The reflexion model technique is particularly useful for software engineering tasks like

software comprehension, and matching designs with implementations. Its primary limitation is

that only structure information is used in the process of model comparison. In reality, the design

and implementation could diverge from each other along many other aspects, including

functional behaviors and non-functional properties. Moreover, the process of model comparison

is most often done by human interpretations of the software reflexion model. This prevents it

from being widely used in the development of complex software systems.

Another example of combining reverse engineering and after-the-fact consistency

checking concerns the architecture of the Linux kernel as presented in [15]. It is akin to the

reflexion model in many ways: both need a high level conceptual architecture as a general guide;

both use existing source code extraction tools to extract used/defined relationships between

functions, variables, and source files; and both have to depend on human interpretation for the

comparison of the low-level concrete architecture and the high-level conceptual architecture. The

www.manaraa.com

21

main difference is that the Linux example uses existing documentation and knowledge of related

systems to form the conceptual architecture, while the reflexion model assumes that such a

conceptual architecture already exists.

2.1.4 Runtime	
 Monitoring	

Runtime monitoring is another branch of correct-by-detection mapping approaches.

Runtime monitoring approaches infer the system architecture from execution traces or system

events that are collected at runtime. Specifically, the runtime monitoring process consists of

three specific steps: (1) observing a system’s runtime behavior; (2) interpreting that runtime

behavior in terms of architecturally meaningful events; (3) representing the resulting

architecture. The approaches of runtime monitoring are favorable in terms of being able to check

the system behaviors against the original architecture. To do this, the availability of executable

software is usually required. Some approaches also demand certain forms of code

instrumentation. This prevents dynamic verification from being used at development time, when

programs are often not complete enough to be executed.

DiscoTect. DiscoTect [153] is a system for discovering the architectures of running

object-oriented systems. It is particularly focused on the problem of bridging the abstraction gap

between system observations and architecture effects, which is essentially the second step

identified above. DiscoTect develops a language that defines the mappings between

implementation patterns and architecture elements. Given a set of implementation conventions or

styles and a vocabulary of architecture element types and operations (i.e. architecture styles), a

mapping can be defined in that language to capture the way in which runtime events should be

interpreted as operations on elements of the architecture style. In particular, the defined

mappings can be reused across programs that are implemented in the same style. Specific

www.manaraa.com

22

examples of an implementation style in DiscoTect could be naming specific classes of a system

in a pre-defined way. Architecture style in the context of DiscoTect is basically same as what is

defined previously, such as a pipe-filter architecture style, except that a list of operators are also

defined for a specific architecture style.

A primary limitation of DiscoTect is that it only works when an implementation obeys

regular coding conventions. Completely ad hoc bodies of code are unlikely to benefit from the

technique. In addition, DiscoTect also requires the identification of an architecture style, so that

mappings can be created. Finally, as with other techniques based on runtime monitoring,

DiscoTect can only analyze a system that is actually executable.

ArchSync. ArchSync [42] is similar to the reflexion model discussed earlier in many

ways. In particular, both systems use pre-existing high-level models as a reference during the

extraction of source models. The difference is that the design models supported by ArchSync are

Use-Case Maps [26], which model functional scenarios by means of causal paths that cut across

design structures. In this way, UCMs are able to capture both structural and behavioral

information at a high-level of abstraction. Another difference between ArchSync and reflexion

model is that ArchSync generates action scripts that can be used to automatically update the

source model when inconsistencies are detected, whereas only simple mappings are created

between the extracted model and the pre-existing model in the reflexion model. However,

automatic generation of these action scripts or synchronizing UCMs relies on a correlation

heuristic technique that may be hard to scale to complex software systems.

Pattern-Lint. Pattern-Lint [123] is a computer-assisted approach for confirming that the

implementation of a system maintains its expected design models and rules. Different from

traditional “reverse engineering” style analysis, Pattern-Lint improves compliance checking by

www.manaraa.com

23

combining static analysis of data sharing and method calls with code instrumentation-based

dynamic visualization. By this means, it is able to support checking for conformance to a variety

of design principles, including architectural structure, implementation guidelines, and non-

functional properties like high cohesion and low coupling. In particular, many aspects of the

checking process are automated, based on an explicit specification of conformance rules

concerning different aspects of the system. Compared with other consistency checkers, support

for multiple design principles and computer assistance are the two most important advantages of

Pattern-Lint. However, Pattern-Lint is essentially an after-the-fact checking tool, so it has to

depend on the assumption that the implementation is appropriately constructed. Moreover, its

support for other non-functional properties, especially those not visualizable, is still an issue

without being explicitly addressed.

2.2 Two-Way Mapping

Two-way mapping approaches recognize the essential roles of both architecture and code

during software development, and allow manual changes to be initiated in both artifacts.

Compared with one-way mapping, especially technologies like full code generation, two-way

mapping is more practical given current modeling and code generation technologies. In

particular, the fact that both architecture and source code may be changed is more close to the

software development scenario. However, this also means more challenges since both the

architecture-to-code mapping and code-to-architecture mapping are involved during this process.

As a result, most two-way mapping approaches as described in the following sections can only

support structural conformance between architecture and source code. Finally, as noted earlier,

two-way mapping is only limited to approaches of correct-by-construction given the existing

analysis techniques of correct-by-detection.

www.manaraa.com

24

2.2.1 Code	
 Generation	
 and	
 Separation	

Code generation and separation is commonly used in practice to help maintain the

architecture-implementation conformance. Approaches in this category automatically generate

architecture-prescribed code, and separate the generated code from user-defined code by using

some primitive code separation mechanisms (e.g. filling-in-blanks). These approaches are similar

to our 1.x-way mapping approach in that all of them recognize that generated code should be

separated from user-defined code and be protected from manual modification. However, it is

important to highlight that there are some significant differences.

First of all, the code separation mechanism used in 1.x-way mapping is different from

existing separation mechanisms. This is specifically discussed in Chapter 4. Simply speaking,

existing code separation mechanisms are called shallow separation or spatial separation in this

study given that their code is physically separated, but is still coupled and implicitly integrated

by some inherent language relationship (e.g. same class, inheritance, etc.). In contrast, the code

separation mechanism used in 1.x-way mapping is called deep separation or linguistic

separation. Compared with shallow separation, deep separation not only provides a better

protection of generated code, but also has some other advantages, such as support for behavioral

code. Another difference is that most existing code generation and separation mechanisms do not

have explicit change management mechanisms. As a result, the architecture and code become

inconsistent soon after the first round of code generation.

Code generation technology is presented in Chapter 3. The existing mechanisms of code

separation are specifically discussed below in this section, including filling-in-blanks [135],

subclassing [18], and partial classes [99].

www.manaraa.com

25

Filling-in-blanks, or protected code region, is a code separation mechanism that has been

widely used in some Computer-Aided Software Engineering (CASE) tools [73, 122, 131]. It

differentiates generated and non-generated code by including some human-understandable

comments, such as “Do not delete”, “To be completed by user”, etc. The generated code is

usually class names, method signatures, and pre-defined variables, while non-generated code is

mostly the implementation of specific methods. The filling-in-blanks mechanism is easy to

implement, but it fails to provide real protections to generated code. This is primarily because its

generated and non-generated code are still physically mixed in the same program element, and

both are under the control of programmers. In this context, it only works under the assumption

that programmers are highly disciplined. Even so, accidental changes to generated code are still a

possibility.

Subclassing is another code separation mechanism that is often used for object-oriented

programs. For each class generated, the subclassing mechanism generates two classes: a base

class that contains generated code and a subclass that contains user’s manual modifications. In

particular, any user-specified changes must be made to the subclass only and the user never alters

the core base class. The inheritance relationship lets the user re-define or extend operations in

generated code, such as adding new operations or adding new instance variables. Should the

code require regeneration later, the tool overwrites only the core class. The user’s changes

remain unaffected.

Compared with filling-in-blanks, subclassing separates code into two separate elements.

This to some extent prevents generated code from being manually modified. A primary

limitation of subclassing, however, is that it requires the use of generated code as base classes.

This may be a problem if the application that incorporates generated code has already developed

www.manaraa.com

26

its own class hierarchy. Using a programming language (e.g. C++) that supports multiple

inheritance partially addresses this problem, but not all languages support this. Besides, the

inheritance itself is more about reusing code of an existing object rather than integrating code.

Partial class is a code separation mechanism that was recently developed by Microsoft.

Its usage is limited to those programming languages that support this feature, such as C# 2.0 and

Visual Basic 2005. Partial class splits the definition of a class, a struct, or an interface over two

or more source files. Each source file contains a section of the class definition, and all parts are

combined when the application is compiled. Figure 2-2 shows an example of partial class, where

the partial keyword indicates all the parts of a class. Using partial classes, generated and non-

generated code are separated into different source files, while still maintaining the mutual

independence.

Partial class currently is not broadly adopted. A primary criticism of partial class is that it

breaks the concept of a class being a single entity with a single concern. Partial class, instead,

introduces the concept of the part of a class being a single entity with a single concern. The fact

that partial classes belong to the same class also incurs additional constraints to separated code.

For example, partial classes or separated code of a class cannot contain methods that have the

same signature. In other words, the code that can be protected by partial class is still limited by

the way that separated code is integrated.

www.manaraa.com

27

Figure 2-2: An example of partial class.

EMF. Eclipse Modeling Framework (EMF) [135] is a modeling framework and code

generation facility that exploits the facilities provided by Eclipse. It supports defining a model

using Java interfaces, UML diagrams, or XML schemas, from one of which an Ecore model can

be created. Ecore is a small and simplified subset of full UML, and is concerned with only one

aspect of UML, class modeling. In essence, an EMF model is the class diagram subset of UML;

that is, a structure model of the classes, or data, of the application.

The EMF code generator can not only generate corresponding implementation classes for

a model, but also a functional editor plug-in integrated into the Eclipse IDE that can be used to

create and edit instances of the model. In addition, EMF provides a runtime framework that can

work with generated code for the purpose of model change notification and persistence support.

EMF-generated code is meant to be modified. EMF uses @generated markers in the Javadoc

comments of generated interfaces, classes, methods, and fields to identify the generated parts. It

is the presence or absence of such tags that determines whether the associated code elements

should be updated or left alone during regeneration.

www.manaraa.com

28

DiaSpec. DiaSpec [20] is a domain-specific ADL that integrates a new concept called

interaction contract. As part of the architecture description, interaction contract describes the

allowed interactions between components. In particular, its implementation is generated and

encapsulated into a programming framework that is not modifiable by programmers. The

interaction contract uses subclassing to decouple its user-defined and generated code.

Additionally, it provides no change management, and simply relies on the Java complier to

detect mismatches between existing code and new generated code. This is not sufficient for

architecture changes that do not cause a compilation error. Moreover, subclassing as a shallow

separation mechanism may also cause incompatibility between generated code and existing class

hierarchies.

2.2.2 Architecture	
 Frameworks	

An architecture framework is a piece of software that acts between a particular

architectural style and a set of implementation technologies. It facilitates the architecture-

implementation mapping by providing fairly-well understood implementations, which assist

developers in implementing systems that conform to the prescriptions and constraints of a

specific architecture style. An architecture framework helps to establish the initial conformance

between the architecture and code, but it does not support the mapping of changes, especially

architecture changes that happen afterwards. As a result, an additional mapping approach, such

as 1.x-way mapping, is required to manage the architecture-implementation conformance. The

most common example of an architecture framework in industry is the standard I/O library in

UNIX, which is actually a bridge between the pipe and filter style and procedural programming

languages like C. Two major framework initiatives from academia are myx.fw and UniCon. Both

are specifically introduced in the following.

www.manaraa.com

29

myx.fw. The myx.fw class framework [34] is an extensible framework of abstract classes

for the architecture style of Myx. The Myx style is a set of rules for composing the components

and connectors of an application like ArchStudio. It provides patterns of composition for

synchronous and asynchronous interactions among components. It also provides rules for what

kinds of assumptions components may make about each other, ensuring a directed/layered

ordering of dependencies among components. The rules of the Myx style include (1)

Components are used as the loci of computation; (2) Connectors are used as the loci of

communication; (3) Components communicate only through well-defined provided and required

interfaces; (4) Components and connectors have two ‘faces’, ‘top’ and ‘bottom’; (5) Components

interact through three distinct patterns: synchronous bottom-to-top procedure call; (6)

asynchronous top-to-bottom (notification) messaging; and asynchronous bottom-to-top (request)

messaging; (7) Components may only make assumptions about the services provided above

them, and may make no assumptions about the services provided below them.

By adhering to these constraints, Myx applications (including ArchStudio) receive certain

benefits. Components remain relatively independent from one another, and it is easy to reuse

components. Components only communicate through explicit interfaces, so it is easy to rewire

components in different configurations without recoding the components themselves.

The Myx framework implements component interconnection and message passing

protocols. Components and connectors used in Myx applications are subclasses from the

appropriate abstract classes in the framework. This guarantees their interoperability, eliminates

many repetitive programming tasks, such as connector implementations, and provides a basis for

development of reusable components in Myx.

www.manaraa.com

30

Specifically, Myx components and connectors are classes that implement an interface

called IMyxBrick. Myx brick (component and connector) classes must minimally implement only

two capabilities. First, Myx bricks must provide zero or more ‘lifecycle providers.’ A lifecycle

provider is a class (possibly the brick’s main class itself) that implements four lifecycle methods:

init(), begin(), end(), and destroy(). These methods are called automatically by the framework as

the bricks are created, attached, detached, and destroyed respectively. Second, Myx bricks must

provide ‘true objects’ for provided interfaces, given the identifier of the provided interface.

Recall that Myx bricks have explicit provided and required interfaces; these interfaces are

associated with objects that implement these interfaces. For each provided interface, a Myx brick

must (on demand of the framework) produce the object that implements that interface.

UniCon. UniCon [128] is an ADL for universal connector support, emphasizing the

structural aspects of software architecture. Like other ADLs, architectures are modeled in

UniCon as a configuration of components and connectors. Components are the locus of

computation and state. Each component in UniCon has an interface specification that defines the

component’s type, and a list of association units – players, whose functionality is pretty much

like that of component interfaces in other ADLs. Connectors are the locus of definition of

relations among components. Each connector has a protocol specification that defines its

connector type, a list of association units – roles, and the properties of roles. The connection

process is then mainly about mapping the players of components with roles of connectors.

The novel part of UniCon is that the implementations of connectors in UniCon are all

built-in, and could be reused in implementing different architectures. By this means, system

developers could focus on the application-specific components, while the management of

connectors is under control. The supported connector types include procedure call, data access,

www.manaraa.com

31

Unix-like pipes, remote procedure call, and real-time scheduling. Further specification or

customization of each connector is achieved by providing values for certain attributes of a

connector type, such as the communication algorithm used, and the maximal connection number

allowed. The primary limitation of the UniCon implementation, however, is that built-in

connector types are not extensible. This makes it hard for application designers who need a

special connector type that is not supported. In addition, connector types in UniCon are chosen

opportunistically and organized loosely. A better approach to do this could be through the use of

a connector classification framework [91], where from general to specific connectors are

organized into categories, types, dimensions, sub-dimensions, and values, based on the provided

services and realization mechanisms.

2.2.3 Unified	
 Representations	

Approaches of unified representations seek to express and enforce structural or

behavioral aspects of software architecture within source code, typically through the adoption of

specially designed programming languages. They embed architecture constructs in a

programming language, and rely on program compliers to check for architecture-code

conformance. Examples include ArchJava and Archface, both of which develop new program

elements to represent architecture constructs in source code. Their benefits are obvious: the co-

evolution of software architecture and implementation. However, this also makes it hard to

modify, extend, and reuse architecture and code independently given that they are mixed into a

single artifact. In addition, approaches of unified representation face a common applicability

issue: no other ADLs or programming languages can be supported.

ArchJava. ArchJava [3] is an extension to Java that unifies software architecture with

implementation in one language. To allow programmers to describe software architecture,

www.manaraa.com

32

ArchJava adds to Java new language constructs to support components, connections, and ports.

Figure 2-3 is excerpted from [3], and shows an example of ArchJava code that represents a

graphical compiler architecture and its parser component. The component, port, and connect key

words in the figure are defined by ArchJava to represent corresponding architecture elements. In

addition, ArchJava enforces some specific rules to protect architecture-implementation

conformance. For example, it requires that a component can only communicate with other

components through explicitly declared ports – regular method calls between components are not

allowed. This makes dependencies explicit, reducing coupling between components. Another

rule specifies that each required method must be bound to a unique provided method. All these

rules are enforced and checked by the ArchJava compilers.

Figure 2-3: An ArchJava example excerpted from [3].

A primary advantage of ArchJava is that it protects communication integrity of the

system under development. Namely, the implementation components only communicate directly

with the components they are connected to in the architecture. This is based on the ArchJava

programming rules described above, and essentially guarantees the structural conformance

www.manaraa.com

33

between software architecture and code. However, ArchJava cannot support behavioral

conformance. In addition, the way that the architecture is implemented is limited to those

predefined in the language. For example, inter-component connections can only be implemented

with method calls in ArchJava.

Archface. Archface [148] is similar to ArchJava in terms of using architecture

description as part of the implementation. It develops a new interface mechanism that plays a

role as ADL at the design phase and as a programming interface at the implementation phase.

Archface exploits technologies of Aspect-Oriented Programming (AOP), such as pointcut and

advice, to specify the collaboration among components. This makes its implementation limited to

aspect-oriented programs. In addition, Archface relies on aspect weaving and round-trip

engineering to maintain the architecture-implementation conformance. Both of these

technologies face significant complexities as a program scales. It is not clear how this is tackled

in Archface.

2.2.4 Roundtrip	
 Engineering	

The goal of software roundtrip engineering is to propagate updates made in derived

artifacts back to their source artifacts [6, 21, 127]. Roundtrip engineering is usually used when

the source model does not contain all information necessary to implement the complete system

or the mapping of models to code is not as good as current day compilers. A typical example is

architecture-centric software development that is introduced in next chapter. The mapping of

architecture to implementations generates architecture-prescribed code. Since software

architecture only contains principal design decisions of a system, generated programs are usually

application fragments and skeletons with blanks for the developers to fill with implementation

details. However, when the user has the possibility of changing the implementations, he can

www.manaraa.com

34

potentially also change parts of the architecture-prescribed code. Obviously this is a source of

trouble, which is specifically addressed by roundtrip engineering. It is important to note that

roundtrip engineering is not necessary for some model-driven development approaches, where

full code generation is enforced and the source model is the only artifact that could be changed

by application developers.

Roundtrip engineering in practice is often implemented by reverse engineering the

modified source code to a high-level model, and replacing the previous version of the software

model with the generated model. During this process, the information in the original software

model is usually not considered, and is simply replaced with the new model. Strictly speaking,

this is inconsistent with how roundtrip engineering is defined and the controversy about it still

exists. Additionally, as discussed in Section 2.1.3, reverse engineering involves the activity of

abstraction and is hard to fully automate. In particular, repeatedly doing it during the

development of complex software systems could be expensive.

Fujaba (From UML to Java And Back Again). Fujaba [107] is a typical example of

using reverse engineering to do roundtrip engineering. Software architecture in Fujaba is

modeled as UML class diagrams that capture the system structure and so called Story-Diagrams

that capture system dynamics. Story-Diagrams are a combination of UML activity diagrams and

UML collaboration diagrams. Activity diagrams are used to specify the control flow and each

activity contains either pure Java source code or a graph rewrite rule that is translated from a

collaboration diagram.

A special feature of Fujaba is that it can reconstruct (i.e. reverse engineer) both structural

models and behavioral models from the code that was manually changed, whereas most other

systems can only reconstruct structure models. In particular, this is done through static analysis

www.manaraa.com

35

or parsing the modified code. In contrast, the construction of high-level behavioral model from

source code is usually done through runtime monitoring discussed in Section 2.1.4. Graph

transformation is involved during this process. In addition, Fujaba also requires that the program

follow some pre-defined implementation patterns (e.g. naming conventions). A certain amount of

annotations also have to be inserted and preserved in the source code. This, as well as the

complexity of graph transformation, can be seen as a major limitation of Fujaba.

A recently developed approach of roundtrip engineering is through the application of

software traceability [2], which is specifically discussed in Section 3.4. At this point, it is

sufficient to know that software traceability concerns the relationships that exist among software

artifacts created during development of a software system. Different from reverse engineering,

the traceability-based roundtrip engineering process updates or reconciles, instead of replacing,

the source models during the return trip. Following the trace links established between derived

artifacts (e.g. source code) and the source artifacts, the system either warns the user that the

changed artifact is generated from a high level model, or suggests further changes in the source

models when manual changes to derived code occur. Automatic update of the source model,

however, is not supported.

Finally, it is important to note that software traceability itself is still a research problem.

It faces several critical challenges, such as creation, storage, and maintenance of traceability

links during software development. This to some extent limits the further development of the

traceability-based roundtrip engineering. In particular, the application of this approach in

industry is rarely seen at this moment. This situation may improve as the technology of software

traceability becomes increasingly mature.

www.manaraa.com

36

2.3 Problems

Based on the discussion provided above, we believe that none of existing architecture-

implementation mapping approaches is a complete solution that can be widely used during

complex software development. Overall, correct-by-detection approaches require the program to

be relatively complete or even executable in order for reverse engineering or runtime monitoring

to be done for inconsistency detection. They are more appropriate for software maintenance,

rather than software development. Moreover, prevention is always better than detection,

especially considering that some inconsistencies may be expensive to detect and recover. From

this perspective, correct-by-construction seems to be a good direction to go for conformance

maintenance during development.

One-way mapping of correct-by-construction, however, faces the challenges of complete

modeling and full code generation, and in practice can only be applied in some highly

specialized domains with the help of DSLs and some other domain specific artifacts. Two-way

mapping approaches of correct-by-construction, in contrast, are more practical given current

modeling and code generation technologies. The problem is, most approaches in this category,

such as architecture frameworks and current code generation approaches, are structure-oriented

only and are limited in the mapping of changes between architecture and source code. Below we

summarize and specifically discuss the problems of existing (especially two-way mapping)

approaches. Resolution of these issues forms an important motivation of this research work.

• Mapping architecture changes to code. Maintaining architecture-implementation

conformance is not a one-time thing since software architecture may be changed

frequently during software development. A single round of code generation helps to

improve software productivity, but is far from solving the conformance issue.

www.manaraa.com

37

Complete code regeneration with primitive merge support (e.g. EMF’s JMerge) is

usually used when architecture changes occur after the first round of code generation.

In the cases where user-defined code already exists and needs to be preserved during

code regeneration, however, this method deteriorates quickly into a manual mapping.

All these difficulties primarily come from the fact that current architecture

implementation is usually done in an ad hoc way, and architecture-prescribed code is

mixed with implementation details. Existing code separation mechanisms to some

extent alleviate this problem. The challenge that they face is how to make separated

code work seamlessly, especially when a portion of the code is regenerated. In

addition, the programmers often have to figure out by themselves what was changed

in the architecture.

• Mapping code changes to architecture. This is essentially an abstraction activity,

and is hard to fully automate. In particular, the code-to-architecture mapping actually

conflicts with the principle of architecture centrality. It can be partially addressed by

automatically generating code from the architecture and forbidding manual changes

to generated code. With current code separation mechanisms (e.g. filling-in-blanks),

however, this only works under the assumption that programmers are highly

disciplined. Even so, accidental changes are still a possibility. Another promising

approach to this problem is roundtrip engineering based on software traceability.

However, the wide application of this technology is still pending on further

development of software traceability. Moreover, automatic update of architecture

when manual changes to generated code occur is still a critical challenge even with

traceability links involved.

www.manaraa.com

38

• Support for the behavioral mapping. Software architecture encompasses both

structural and behavioral design decisions of the system under development. In

contrast, most architecture-implementation mapping approaches are structure-

oriented only. This is usually because architecture behavioral specifications (e.g.

UML’s sequence diagrams) are not complete enough to generate code from, and most

existing code separation mechanisms do not support the separation of architecture-

prescribed behavioral code from implementation details. Thus, the corresponding

behavioral code is inevitably mixed with user-defined dynamic details. Protection of

architecture-prescribed code becomes extremely difficult in this situation. Another

challenge is that behavioral architecture specification could involve the interactions of

several architecture components, and the corresponding implementation often cross-

cuts the implementations of the involved components. Under this circumstance, code

separation becomes even harder based on existing code separation mechanisms. The

adoption of special modeling languages (e.g. Archface) may help at this point.

However, as discussed earlier, these approaches rely on the design of special

languages and are hard to be widely used.

www.manaraa.com

39

3 Related Work

This chapter reviews a number of software development activities that are related to the

process of architecture-implementation mapping, including architecture modeling, code

generation, architecture-centric development, software traceability, and software change

management. Of these different activities, architecture modeling and code generation provide

some pragmatic techniques that are reused in our study so that we can focus on the consistency

control of our approach; architecture-centric development actually represents an application

context of architecture-implementation mapping; finally, software traceability and change

management are two areas that are related to architecture-implementation mapping, even though

corresponding techniques are not directly applied in this study.

3.1 Architecture Modeling

Software architecture modeling is an important portion of architecture-implementation

mapping. Architecture models may be expressed using different modeling languages, and may

express different aspects of the system (e.g. structure, behavior, etc.). Significantly, different

definitions of software architecture still exist in the current literature. All these variations have an

impact on the process of architecture-implementation mapping, and are specifically introduced in

the following subsections.

3.1.1 Definition	
 of	
 Software	
 Architecture	

Software architecture was first defined by Perry and Wolf as a tuple of Elements, Form,

and Rationale [120]. That is, software architecture is a set of architectural or design elements that

have a particular form. Specifically, these elements could be processing elements, data elements,

www.manaraa.com

40

or connecting elements. The processing elements are those components that supply the

transformation on the data elements; the data elements are those that contain the information that

is used and transformed; the connecting elements (which at times may be either processing or

data elements, or both) are the glue that holds the different pieces of the architecture together

into architecture form. Finally, an underlying, but integral, part of an architecture is the rationale

for the various choices made in defining an architecture. The rationale captures the motivation

for the choice of architectural style, the choice of elements, and the form.

Shaw and Garlan defined software architecture modeling as a problem of designing and

specifying the overall system structure that is beyond the algorithms and data structures of the

computation [54]. These structural issues include gross organization and global control structure;

protocols for communication, synchronization, and data access; assignment of functionality to

design elements; physical distribution; composition of design elements; scaling and performance;

and selection among design alternatives.

Based on these early definitions of software architecture, a number of other definitions

were presented in the following decade. For example, a later definition that has been widely

adopted states that software architecture of a computing system is the structure or structures of

the system, which comprise software components, the externally visible properties (assumptions

that other components can make of a component: provided services, shared resources, etc.) of

those components, and the relationships among them [26].

All these definitions do not conflict with each other. Instead, they are similar in that they

all emphasize the structural perspective of software architecture (the so called 4 “C” model:

Components, Connectors, Configuration, and Constraints). This to a great extent is based on the

modeling technologies of software architecture at that time. For example, most early architecture

www.manaraa.com

41

description languages can only model the system structure. A primary benefit of these traditional

definitions is that they are concrete and straightforward to follow. The limitation, however, is

also significant. All these definitions of software architecture rely too much on, or are limited by,

the development status of modeling technology at the time the definition was given. Thus, they

may soon become out of date with the development of corresponding technologies (e.g.

extensible architecture modeling). A typical example is Model-Driven Development, which also

emphasizes the role of software architecture in the development, but cannot be explained by

most traditional architecture definitions since its models usually involve extensive information

beyond structure and do not have some well-recognized architecture constructs (e.g. connectors).

The definition we used in this research study defines a software system’s architecture as

the set of principal design decisions about the system [143]. We believe this is an accurate

characterization of software architecture that is not affected by the limitations of existing

modeling technology. Different from the traditional definitions, this definition particularly

emphasizes the extensibility of software architecture: different principal design decisions may be

included by different sets of stakeholders for a system. It may look abstract given current

modeling technologies, but it offers a universal explanation for all architecture-related activities,

including MDD mentioned above. With the further development of architecture modeling

technologies, especially extensible modeling languages, we believe this definition will be

gradually adopted more widely.

Finally, it is important to note that we still follow the earlier definition of software

architecture in our implementation of structural architecture specification. Namely, the

architecture consists of a configuration of components and connectors. In this way, we can relate

our technology to historic architecture models.

www.manaraa.com

42

3.1.2 Architecture	
 Description	
 Languages	

Architecture description languages (ADLs) overcome the informality of most box-and-

line descriptions of software architecture, and provide notations and tools for precisely

representing and analyzing architectural design decisions. Existing ADLs include Darwin [86],

Rapide [85], Wright [4], Acme [57], AADL [47], UML [89], and xADL [32, 36]. Each of them

provides certain distinctive capabilities, such as view support, dynamism, and analysis

mechanism. A specific classification and comparison of these ADLs is provided in [87], and is

not repeated here. Instead, we focus on the description of the xADL and UML languages in this

section. Both of these languages are used in this research study with certain extensions or

adaptations made.

xADL is an extensible XML-based ADL. The version used in this study is xADL 2.0.

Extensible Markup Language (XML) [151] is a markup language that defines a set of rules for

encoding documents in a format that is both human-readable and machine-readable. A XML

document forms a tree structure that consists of a set of nested elements, each of which is

delimited by a start and end tag (a markup construct that begins with "<" and ends with ">"). A

XML element may contain additional annotations called attributes. In addition, the XML schema

language or XML Schema Definition (xsd) can be used to define the structure of an XML

document, such as elements that can appear in a document, the order of elements, and default

values of attributes.

Every xADL model is a well-formed and valid XML document. By well-formed, it means

the document conforms to the basic structure of tags and attributes defined in XML. By valid, it

means the document is consistent with the defined schema. In particular, xADL 2.0 is defined in

a modular language design approach. Specifically, its notations are not defined in one large

www.manaraa.com

43

XML schema block. Instead, xADL 2.0 is defined as a set of XML schemas, and the xADL 2.0

language is simply the composition of all the xADL schemas. Each xADL schema adds a set of

features to the language, such as the ability to describe components and connectors, or the ability

to indicate some particular elements in the architecture. Figure 3-1 is excerpted from [38] and

shows the existing schemas of xADL 2.0.

Figure 3-1: xADL schemas and dependencies

Among current xADL schemas shown in the figure, Structure and Type, Instances, and

Java Implementation are the ones that are directly related with this study. Structure and Type

defines basic structural modeling of prescriptive architectures: components, connectors,

interfaces, links, as well as types for components, connectors, and interfaces. Instances defines

basic structural modeling of description architectures: components, connectors, interfaces, and

links. Java Implementation is related with architecture-implementation mapping. It defines a set

of elements to map from structural architecture elements (i.e. components) to Java

www.manaraa.com

44

implementations. New schemas are still necessary for the investigation of this research study, for

example, to model architecture changes and interactions among components. These are

specifically discussed in Chapter 4.

Another significant advantage of xADL is its tool support [37]. In particular, there is a

tool called Apigen that can automatically generate new data binding libraries (APIs for parsing,

reading, and writing documents) for new xADL features or schemas. The data binding library

provides an object-oriented interface to edit xADL documents. On top of it, xADL’s tool suite

includes a wrapper called “xArchADT”, which can cast the object-oriented interface to a

“flattened” interface that can be exposed over network-based middleware. Based on the data

binding library and xArchADT, new tools can be built to support the exploration of those new

features. This makes xADL an ideal language for investigating new architectural approaches and

research directions.

Unified Modeling Language (UML) is a standardized modeling language that is mostly

used the field of object-oriented software engineering. The standard is managed, and was

created, by the Object Management Group (OMG). It was first added to the list of OMG adopted

technologies in 1997, and has since become an industry standard for modeling software-intensive

systems. Its latest released version is UML 2.3.

UML consists of a number of modeling diagrams, which can be roughly classified into

two categories: structure diagrams and behavior diagrams [50]. A typical example of structure

diagrams is the UML class diagram, which describes the structure of a system by showing the

system's classes, their attributes, and the relationships among the classes. It is used in almost all

object-oriented methods. A problem of class diagrams is that sometimes they contain too many

www.manaraa.com

45

details, given that they are relatively close to the source code. From this perspective, class

diagrams often cannot provide real abstractions as most ADLs do.

Examples of behavior UML diagrams include use case diagrams, sequence diagrams,

state diagrams, and activity diagrams. A use case is a set of scenarios (a sequence of interaction

steps between a user and a system) tied together by a common user goal. A use case diagram,

thus, depicts interactions between a user and a system, and represents an external view of the

system. It is rarely used to model the inside working mechanism of a system. In contrast, a

sequence diagram describes how groups of objects of a system collaborate in a single use case.

Typically, a sequence diagram shows a number of involved objects and the messages that are

passed between these objects within the use case. A state diagram describe all of the possible

states that a particular object can enter and how the object’s state changes as a result of events

that reach the object. This usually spans several use cases. Finally, activity diagrams include

some special modeling notations, such as branch, merge, and form, to represent parallel

behaviors. They are primarily used in workflow modeling and multithreaded programming.

Current usages of UML are primarily in three modes: UmlAsSketch, UmlAsBlueprint, and

UmlAsProgrammingLanguage [51]. In the UmlAsSketch mode, developers use the UML to help

communicate some aspects of a system. The essence is selectivity. This mode is very popular. In

contrast, UmlAsBlueprint is a UML mode that focuses on completeness. The goal is to express

software designs in such a way that the designs can be handed off to a separate group to write the

code, much as blueprints are used in building bridges. This mode is how we adopt UML and use

it in our approach as described specifically in Section 4.5, except that the code is automatically

generated from these UML models. The third mode raises the bar of UML even higher. It tries to

use UML as a high level language by extending standard UML and providing executable

www.manaraa.com

46

semantics for it. A typical example is executable UML defined based on action semantics. This

is mostly advocated by some MDD approaches introduced later in Section 3.3.1, such as Model-

Driven Architecture (MDA). They try to make UML computation complete to achieve a high

degree of formality and completeness for the platform independent model (PIM).

3.1.3 Modeling	
 Aspects	

An architecture model is an artifact that captures some or all of the design decisions that

comprise a system’s architecture in a machine-understandable ADL. It may represent different

aspects of the system, including structure, behavior, and non-functional properties [80, 147].

Other modeling aspects also include domain variations used by domain-specific approaches and

composition specifications for component-based development [67, 138]. In this research study,

however, we only focus on the mapping of structural and behavioral architecture specifications

to the code.

System structure is a basic aspect that can be captured by most architecture models. As

mentioned earlier, existing ADLs model the architecture structure as a configuration of

components and connectors with some constraints enforced. Important elements of a structural

architecture model include:

• Components. Components are the loci of computation and state in the architecture. A

component (1) encapsulates a subset of the system’s functionality and/or data, (2)

restricts access to that subset via an explicitly defined interface, and (3) has explicitly

defined dependencies on is required execution context.

• Connectors. Connectors are the loci of communication in the architecture. A

connector can be seen as a special component that is tasked with effecting and

regulating interactions among components. From our perspective there is no

www.manaraa.com

47

difference between components and connectors in terms of the mapping to source

code. Implementing both as components is sufficient for this research study.

• Interfaces. Interfaces are components’ portals to the outside world. There are

provided and required interfaces. A provided interface expresses the services that a

component provides, usually in the form of a list of functionally related operations. A

required interface is the interface to services provided by other components in a

system on which this component depends for its ability to perform its operations.

• Links. Links are connections between elements that define the topology of the

architecture.

• Configuration. An architectural configuration is a set of specific associations between

the components and connectors of a software system’s architecture.

Examples of ADLs that primarily focus on the capture of architectural structure include

Darwin, Wright, and UniCon. These languages tend to be semantically precise, but lack breadth

and flexibility. They support similar architecture constructs, although mostly in different ways.

For example, systems in Darwin are modeled as a set of interconnected components and there is

no notion of explicit connectors in Darwin. However, a component that facilitates interactions

could still be interpreted as a connector. Interfaces in Wright are simply specified using a

notation derived from the Communication Sequential Processes (CSP) [4], which are introduced

in next section. This gives Wright the ability to analyze constraints such as deadlock freedom.

A primary limitation of structural architecture models is that they cannot capture

interactions among components or dynamic behaviors of a specific component. For example, the

structural designs only declare some operations expected or provided in the interface of the

participating components, but do not capture the control flow of several small methods scattered

www.manaraa.com

48

around the architectural configuration. Thus, the control flow among these operations is usually

lost when mapped to code. This causes the clarity or the underlying rationale of the designs to

get lost in the code [94]. In general, a single method only make sense in a larger context and is

difficult to be reused independently.

In contrast, a behavior model of a software system captures interactions among system

elements or between the system and its external user, the order in which they can be executed,

and maybe other aspects of this execution such as timing and concurrency. In essence, the

primary challenge of behavioral modeling is that a static method has to be used to describe

dynamic aspects of the system. Existing behavioral modeling methods can be classified into

those that are based on formal notations and those that are for practical use. Each has its own

range of applications, and important limitations as well. Generally, formal methods are

expensive and complicated for normal use. In most cases, people would rather write code

directly in implementations. Practical behavior models like UML diagrams are informal and still

semantically incomplete. It is hard to generate complete code from them without any significant

extensions made.

Formal behavioral modeling methods include the use of process algebra [96], Petri nets

[101], Actor model [1], and Z notations [134]. Automatic analysis is one of their primary

purposes [74]. Process algebras, Petri nets, and the Actor model particularly focus on modeling

concurrent computations. Specifically, process algebra is the study of the behavior of parallel or

distributed systems by algebraic means. “Process” refers to behavior of a system, and can be

simply seen as a series of events, the basic units of a behavior model. Processes are then

described by combining events and other simpler processes through a set of pre-defined

composition operators. Significantly, the operations must satisfy a set of axioms or laws, based

www.manaraa.com

49

on which advanced analysis and verification can be done. Examples of process algebras include

Calculus of Communicating Systems (CCS) [95], Communicating Sequential Processes (CSP)

[70], and Pi-calculus [97]. Pi-calculus is an extension to CCS, and addresses the issue of

dynamic reconfiguration in a distributed system. One of its important extensions is treating links

as ordinary variables (called names) that can be passed among agents. In this way, links between

agents can be created and destroyed dynamically. A Petri nets consists of places, transitions, and

directed arcs. By changing the meanings of these elements, Petri nets can be used to model

control flow, data flow, and state machines of a system. Its major weakness, however, is that

Petri net-based models often tend to become too large for analysis even for a modest-size system.

Finally, Z is a formal notation that is based on set theory and first-order logic. The Z language

focuses on data and its transformations. Systems are specified as sets of schemas. The Z

schemas, which can be regarded as generalized type definitions, are used to represent basic

constructs. These schemas provide semantics that permit the formal verification of properties of

the model. Additional details on Z can be found in [134].

Behavior modeling of software architecture mostly reuses or is based upon the work

described above. Wright and Darwin are two ADLs that use existing formal notations to model

system behaviors. Wright uses CSP, and Darwin uses FSP (another instance of process algebra).

With supportive tool built (e.g. LTSA), models specified in these languages can be analyzed to

verify if the system design satisfies some predefined properties, such as deadlock freedom,

liveness, and so on. In essence, what Wright and Darwin do is describe the system structure with

their own ADL constructs, and use structural descriptions as a framework for behavioral

specification. They suffer from the same limitations as those formal notations, high complexity.

The architecture analysis and design language (AADL) is an ADL that provides a more practical

www.manaraa.com

50

way to model system behaviors. It has two specially designed elements: Call Sequences and

Modes. Call Sequences describes the interactions between or within components, and Modes

represent operational states of a system or a component. Functionally speaking, these two

language elements are very similar to interaction and state diagram of UML. From this

perspective, we think AADL actually takes a simple, but practical way for behavior description.

The risk, as described above, is how to successfully map these informal specifications into code.

3.2 Code Generation

Similar to structural modeling, structural code generation is well understood and not a

particular research issue. Architecture-implementation mapping brings a new challenge in this

regard, however, which requires both structural code and behavioral code, to be automatically

generated from source models. This is hard not only because non-structural modeling is not yet

mature, as introduced in previous section, but also because system dynamics are involved and

many more variations need to be considered compared with static structural code generation.

Figure 3-2 shows existing code generation approaches and how they treat source code

differently. Code can be treated as a model, program, or plain text. Approaches that treat code as

model require the definition of a metamodel [9] for the target programming language, and use

model transformation approaches [31] for code generation. A typical example is Eclipse’s ATL

project [45]. It remains to be seen how well these approaches can be practically used in complex

software development, especially considering the high complexity that is often involved in

model transformation. Approaches that treat code as program are trying to use the target

programming language’s own metaprogramming ability, e.g. reflection, for code generation [14].

They are limited in the sense that they can only be used to generate structural constructs like

classes, methods, and attributes.

www.manaraa.com

51

Figure 3-2: Different code generation strategies see code differently.

Treating code as plain text, or template-based code generation represents a popular

approach [25, 69]. A typical example is Java Server Pages (JSP) that are used to create web

pages, where the Java escapes are executed to produce the dynamic portions of the HTML page.

A primary advantage of the template-based approach is that templates are independent of the

target language. This simplifies the generation of any textual artifacts, including documentation.

A primary challenge, however, is verifying the correctness of code embedded in templates that

are usually not runnable. Thus, a comprehensive code generation approach that can work as well

as a program compiler is still missing. Further development in this area may be pending on a new

perspective.

User control, the amount of work that is required from the user, is another important

discriminator between various approaches to code generation. There are two extremes. The

simplest implementation is one that makes the user responsible for every single generation step.

Code Generation Strategies & Perspectives

Code

Plain text

P
ro

g
ra

m
M

o
d
e
l

Template-based code

generation

?

M
e

ta
p

ro
g

ra
m

m
in

g

w
it
h

 r
e

fl
e

c
ti
o

n

M
o

d
e

l-

tra
n

s
fo

rm
a

tio
n

m
e

c
h

a
n

is
m

s

A comprehensive code

generation approach

(pending)

www.manaraa.com

52

Such an approach is only practical if the system is of small scale and contains compact mapping

steps. Fully automatic systems, on the other hand, hide everything in the code generation process

from users by using built-in heuristics to evaluate different mapping possibilities. Such systems,

however, work satisfactorily only for restricted domains of application [10]. Against this

background, it is desirable if a code generation process is interactive. For example, users may be

responsible for making decisions like selection of appropriate transformation rules, while the

system automatically applies the selected rule and records users’ selections for the purpose of

replay. At this point, how to find a balance between user and system control is an important issue

that needs careful consideration.

Granularity measures the size of software entities used as the construction unit in the

code generation process. From fine to coarse, variations of granularity include programming

language constructs, code fragments and skeletons, components, and large-scale domain-specific

subroutines [41]. In general, increasing granularity can not only improve software reusability

[82], but also contract the implementation space given that reusable constructs usually

encapsulate certain implementation decisions from the external. At this point, programming

language constructs, such as variables and arrays, provide very little support since it is essentially

generating code from scratch. In contrast, large-scale subroutines are much more useful,

although limited to some domain-specific approaches like application generators. A typical

example of code fragments and skeletons in architecture-implementation mapping is an

architecture framework, which specifies key elements of an architecture style in the form of

source code. Finally, software components are mostly used in “component-based” software

development, where glue code is generated from composition specifications to combine different

large-grain components into one application.

www.manaraa.com

53

3.3 Architecture-Centric Software Development

A system’s software architecture is the set of principal design decisions made about it.

Architecture-centric development emphasizes that software architecture, instead of being a

documentation artifact that is peripheral to code development, should play an essential role

throughout the software development lifecycle. Specifically, it requires that all the architecture-

related changes start right from the architecture, and be mapped to code through an architecture-

implementation mapping tool. Examples of architecture-centric development include model-

driven development (MDD) and architecture-based research. A significant difference between

these approaches is the modeling notation used and the amount of modeling versus programming

in software development [156]. Therefore, different strategies are often taken to maintain

architecture-implementation conformance [126].

3.3.1 Model-­‐Driven	
 Development	

MDD suggests a paradigm where software design models take the role of traditional

programs, and become the main artifact of development. UML and domain specific languages

(DSLs) are the main modeling notations of MDD. Code generators are extensively used in MDD

to generate code from design models. Based on the amount of generated code, approaches of

MDD are divided into two camps [29, 63, 135], which we refer to as MDD in theory and MDD

in practice. MDD in theory aims to make design models compilable and executable, so that

software developers can solely focus on abstract models. To achieve the goal, it emphasizes full

code generation. Initiatives in this camp include Model-Driven Architecture (MDA) [81],

Model-Integrated Computing (MIC) [136], and Software Factories [61]. They are different in

various ways, some are generic, others domain specific. However, they all face the same

challenge that was discussed in Chapter 2 when it comes to full code generation. Figure 3-3

www.manaraa.com

54

provides a simplified illustration of these approaches with important artifacts and code

generation processes explicitly represented. MDD in practice, in contrast, recognizes the

essential role of both design models and implementation. Its generated code is an application

skeleton that requires software developers to fill in details. A typical approach of this camp is the

Eclipse Modeling Framework (EMF) that was introduced in Chapter 2.

Figure 3-3: Model-driven development.

MDA is a conceptual framework in support of model-driven development, defined by the

Object Management Group (OMG) in late 2001. The term “architecture” in MDA is used

because MDA prescribes certain kinds of models, how those models may be prepared, and the

relationships of the different kinds of models. Specifically, software development in the MDA

starts with a Platform-Independent Model (PIM) of an application's business functionality and

behavior, constructed using Unified Modeling Language (UML) based on OMG's MetaObject

Model-Driven
Architecture (MDA)

Model-Integrated
Computing (MIC)

Software
Factories

PIM

PSM

Complete Code

Transformation
(QVT)

Template

Model (DSL)

Concrete Model

Code

Progressive
Transformation

Framework (may
not exist)

Domain Specific
Models

Complete Code

Meta-Programmable
Code Generator

www.manaraa.com

55

Facility (MOF). This model remains stable as technology evolves, extending and thereby

maximizing software reusability. MDA development tools, available now from many vendors,

convert the PIM first to a Platform-Specific Model (PSM) and then to a working implementation

on virtually any middleware platform [13]: Web Services, XML/SOAP, EJB, C#/.Net, OMG's

own CORBA, or others.

One of key challenges that MDA faces is transforming the high-level PIM models to

PSMs that tools can use to generate code. Research on model transformations is still immature

and there is little experience. The OMG tries to solve the problem by proposing a new standard,

Query/View/Transformation (QVT), to address the way transformations are achieved between

models whose languages are defined using the MOF. It contains a language for creating views of

a model, a language for querying the model, and a language for writing transformation

definitions. Some desirable features of transformations in MDA include traceability, incremental

changes, and roundtrip engineering.

MIC and Software Factories are both domain-specific approaches. MIC was originally

designed for embedded software development. MIC advocates the application of different types

of models written in domain-specific modeling languages (DSMLs), and manages the

interdependency among models at the meta-level [78]. In particular, MIC develops a meta-

programmable generic modeling environment (GME) that allows the creation of models that

comply with the static semantics defined in the corresponding metamodel [83].

Like other model-based approaches, an important task for the MIC technology is the

generation of embedded systems from domain models. A special property about MIC at this

point is that embedded systems frequently consist of many physical and software components

that are customizable and reusable in different systems. Thus, the role of the model-based

www.manaraa.com

56

generators in the MIC framework is just to generate the “glue” required to compose the

integrated application from library components, consistently parameterize the components, and

customize the composition platform.

The primary goal of Software Factories is to industrialize software development, and

improves software productivity and predictability. The concept is the confluence of model-driven

development, component-based development, and software product lines. These technologies

respectively represent three dimensions that software factories are trying to integrate: abstraction,

granularity, and specificity. Generally speaking, software factories increase the abstraction level

by focusing on high-level software models in application development, improve the granularity

of abstractions by increasing the size of the software constructs, and promote the usability or

value of abstractions by increasing their specificity to some problem domain.

Framework completion and progressive refinement are two cooperative approaches used

in Software Factories to generate an executable from requirements. Specifically, framework

completion is the approach where a software framework that specifically addresses a well-

defined, narrow problem domain is provided, and the abstractions in a model are used to define

how the variability points in the framework must be completed. In the code generation process,

only minimal code needs to be generated to fill variability points in a domain-specific framework

from a domain-specific model. If it is not possible to build a software framework that can

provide a natural platform for implementing a useful DSL, it may be necessary to define another

layer of simplifying abstractions into which the first set may be mapped. This second set of

abstractions may be easier to implement than the first. The abstractions are then transformed

into an executable by a series of steps. This process is called progressive transformations. It is

important to note that the transformation process is inherently parameterized, and operates by

www.manaraa.com

57

binding objects in source models as parameter values, and creating or modifying objects in target

models.

3.3.2 Architecture-­‐based	
 Research	

Architecture-based research specifically refers to the work done in the research

community of software architecture, where architecture description languages (ADLs) are

usually used as modeling notations. Figure 3-4 shows the architecture-implementation mapping

approaches that are mostly used in architecture-based research. All of them have been

specifically discussed in Chapter 2. In this section, instead, we focus on two architecture-based

development activities, architecture-based self-adaptation and product line architectures. Both of

them involve the process of architecture-implementation mapping as discussed below.

Figure 3-4: Architecture-based research.

Dynamic adaptation refers to the capability of a self-adaptive software system that can

modify its own behavior in response to changes in its operating environment (e.g. end-user input,

Architecture
Refinement

Framework &
Middleware

ADL Tool
Support

Domain-Specific Software
Architecture (DSSA)

Abstract
Architecture

Concrete
Architecture

Software
Architecture

Architecture
Framework

A series of
refinement Domain

Components

Code Fragement

Specialized
Reference

Architecture

Complete Code

Code
Fragement

Language Built-in
Implementations,
Existing UML
Tools

Software
Architecture

+

Configuration
Method

+

Template

www.manaraa.com

58

external sensors, etc.). Architecture-based adaptation [113, 115, 154] brings promising results in

this regard. This is an approach where changes are first formulated in, and reasoned over, an

explicit architectural model when environment changes. Changes to the architectural model

(usually at the level of components and connectors) are reflected in modifications to the

application’s implementation, while ensuring that the model and the implementation are

consistent with one another. It is at this point that an architecture-implementation mapping

approach has the potential to play a significant role by dynamically mapping architecture

changes to code.

An architecture-based infrastructure is described in [112] to support software self-

adaptability. Specifically, it separates adaptation activities into two simultaneous processes:

adaptation management and evolution management. Adaptation management monitors and

evaluates the application and its operating environment, plans adaptation, and deploys change

descriptions in architecture terms to the running application. In contrast, evolution management

is responsible for actually evolving software and maintaining the consistency between

architecture and implementation. A primary contribution of this approach is the development of a

comprehensive methodology that integrates different technologies in support of the range of

adaptations. Significantly, the inherent properties of software architecture, such as separation of

concerns and abstracting away obscuring details, determines that it is the right abstraction level

for managing software evolution.

An integral part of the adaptation infrastructure described above is maintaining the

consistency between the architectural model and the implementation as changes are applied.

Dynamic adaptation exposes additional challenges, such as protecting integrity of adapted

systems, and identification of quiescent states when adaptation can safely occur.

www.manaraa.com

59

Keeping the cost of software changes low is another important requirement in software

evolution. This is especially emphasized when making changes that are anticipated before

system development starts, so called anticipated changes [119]. In contrast, changes that are

discussed earlier in the dissertation can be seen as unanticipated changes, which could result

from requirement changes, system refactoring, or development incidents. Anticipated changes

usually occur when developing a family of software products, or a product line. For example,

producing a new software product simply by extending a related existing product (e.g. adding an

optional capability, customizing for different platforms). At this point, being able to reuse

existing code that encapsulates domain, business, and technology information as much as

possible becomes very important.

The use of product lines has gradually become a principled form of software reuse over

the past decade. This is partially due to the application of product line architectures (PLAs) [68],

an architecture-centric approach to product lines. A PLA explicitly specifies variation points

(e.g. optional and alternative elements) inside the reference architecture of an entire product line

to differentiate products. Implementing a PLA is also a mapping problem, except that multiple

products composed of core elements and variation points are involved. During this process, it is

important that separation of concerns can be achieved among the different component

implementations as it is in the architecture. Otherwise extensive changes have to be made to the

code of existing components to introduce variations, and software reusability is compromised.

However, separating concerns in the implementation artifacts along preferred boundaries

involves significant challenges, especially for those crosscutting concerns that are spread over

the system [102].

www.manaraa.com

60

3.4 Software Traceability

Software traceability represents relationships that exist among software artifacts created

during development of software system [7, 133]. It was originally applied in the area of

requirements engineering to assess the drift between the software product’s actual behavior and

the original requirements specified by the customer. The field of software traceability then has

grown to accommodate other types of artifact relationships across the software lifecycle with the

goal of enhancing software product quality. In particular, software traceability facilitates the

important software development tasks of system comprehension, change impact analysis, system

debugging, as well as roundtrip engineering, as described in Section 2.2.4.

It is important to highlight that software traceability and conformance management are

two related, but different areas. This is especially important when it goes to architecture-

implementation mapping. In other words, having correct traceability links established between

architecture elements and source code does not necessarily mean that the architecture and code

are conformant. For example, an architecture element (e.g. component) may be incorrectly

implemented in the linked code element (e.g. class). In this case, the established traceability link

is still valid though the architecture and code is not consistent.

Software traceability currently faces some critical challenges, such as automatic creation

and maintenance of traceability links, the storage of captured links, and link semantics [2].

Important research progress has already been made in corresponding areas. However, the

application of software traceability in practice is still limited. This is primarily due to the

overhead of creating and maintaining traceability links, given that many software artifacts (e.g.

requirements specification, design, code, test cases, etc.) may exist during software development

and each is often under constant change.

www.manaraa.com

61

ArchTrace [104, 105] is a tool to support the evolution of traceability links between

architecture descriptions and corresponding source code. ArchTrace uses a policy-based

approach, where different policies specify different actions to take, or constraints that must be

satisfied, upon the evolution of either software architecture or source code configuration items.

The execution of one policy can result in the triggering of one or more other policies. For

example, a policy may define the addition of new traceability links when new versions of source

files are available, and another policy may suggest the removal of old traceability links after the

execution of the first policy. The effectiveness of ArchTrace is evaluated by replaying the past

check-in, check-out data from a real development project, and comparing the set of ideal

traceability links with the set of actual traceability links produced by ArchTrace. The result is

positive given the experimental settings. In general, ArchTrace is a good complement to the

architecture-implementation mappings introduced in this dissertation in the sense that it

maintains valid architecture-to-implementation traceability links, based on which architecture

change notifications presented in Section 4.4.3 could be fulfilled to help keep architecture

descriptions and implementations consistent.

3.5 Software Change Management

Generally speaking, software change management includes many different activities,

such as change impact analysis, configuration management, and even regression testing. In this

study, however, our focus on change management is limited to the issues of change mappings,

change notifications, and change control. We do not examine the problems of version control,

building baselines, etc. Existing work in this limited area are reviewed and compared to change

management of 1.x-way mapping in this section.

www.manaraa.com

62

ArchEvol [108] was originally designed as an integration of Eclipse, ArchStudio, and

Subversion. It addressed the evolution of the relationships between versions of the architecture

and versions of the implementation through the interaction of these three tools. Recent work on it

[110] has upgraded ArchEvol to an Eclipse-based development environment that supports

concern-driven software development. It maintains an explicit concern model that consists of a

hierarchy of concerns (rationales of development decisions) and the links to the code fragments

that implement corresponding concerns. Based on the model, concerns can be visualized at both

the code and the architecture level. In addition, heuristic and manual techniques are also

developed to maintain the concern mapping over time. ArchEvol thus represents a good

compliment to 1.x-way mapping, which only focuses on structure and behavior architecture-

implementation mapping.

Lighthouse [130] is an Eclipse plug-in built to support the coordination of multiple

developers. It develops a new concept called emerging design, an up-to-date representation of

the design that is extracted from the developers’ code. Basically, Lighthouse collects code

changes from each developer (by monitoring their workspace), and presents the emerging design

as a diagram that is annotated with additional information about ongoing changes, such as which

developer is making what kind of changes to which element. Various filters are also built in

Lighthouse to reduce the number of elements shown in the emerging design, so that it can be

scaled for use in large software development. Lighthouse represents an efficient change

notification mechanism. It is limited in terms of change mapping, however, because developers

still have to manually respond to each related change. In addition, privacy may be an issue that

endangers its wide use, given that each developer workspace is monitored and transparent to

others.

www.manaraa.com

63

The CHS tool maps change-based product line architectures (PLA) to code in a software

configuration management (SCM) system [84]. CHS supports the activity of generating a

directory structure and skeleton code in the SCM system. In particular, it requires that generated

code not be modified by the developers. However, no specific explanations are given regarding

to how generated and non-generated code should be separated and integrated, and how changes

should be handled differently in both parts. This is primarily because the focus of CHS is on the

adoption of a change-based SCM system to map changed-based modeling of a PLA, rather than

providing a complete solution to architecture-implementation conformance management. The

idea of protecting generated code from being manually modified can also be found in some other

research work [17, 18, 92]. As introduced previously, most use so-called spatial separation or

shallow separation for this purpose, which is not sufficient for architecture-implementation

conformance management.

www.manaraa.com

64

4 Approach

This chapter presents a new architecture-implementation mapping approach, 1.x-way

mapping. It begins with an introduction of basic design principles and underlying insights of the

approach. After that, an overview of 1.x-way mapping is given, and its four core mechanisms are

specifically introduced: a code separation mechanism, an architecture change model,

architecture-based code regeneration, and architecture change notification. Support for

behavioral mapping and other related issues, such as prevention of programmer-induced negative

properties are also discussed. At the end of the chapter, a comparison framework is presented to

highlight the differences between 1.x-way mapping and the existing mapping approaches

described in Chapter 2.

4.1 Design Principles

As stated in Section 1.3, the hypothesis of this research study is that 1.x-way mapping

can be applied in the development of a realistic system to prevent its architecture-prescribed code

from being changed by programmers, and support automatic mapping of structural and

behavioral architecture changes to code. Strictly following this goal, the core design principles of

1.x-way mapping are summarized as follows:

• The implementation of software architecture and changes to it should be regulated.

The freedom of implementing architecture and the effort of maintaining architecture-

implementation mapping can be seen as a tradeoff to make. The difficulties that

traditional software development faces in this regard comes from the fact that

architecture is often implemented in ad hoc ways, and architecture-prescribed code is

mixed with implementation details. As a result, it is hard for programmers to know

www.manaraa.com

65

either how or when to update architecture when code changes occur. In contrast,

approaches like architecture frameworks, EMF, and ArchJava described in Chapter 2

address the issue by regulating the implementation of the architecture through the use

of pre-defined code, code separation, or special programming language constructs.

Correspondingly, it is relatively easier for them to maintain the architecture-

implementation conformance, even though problems still exist as discussed earlier in

Section 2.3.

• The best way to map code changes to architecture is to avoid the need for such

reverse mapping by protecting generated code from manual modification. As

mentioned earlier, the code-to-architecture mapping itself is essentially a problem of

abstraction [125], and is hard to be fully automated. Moreover, it conflicts with the

principle of architecture centrality in software development, which requires the all

architecture related changes should start from the architecture and be mapped to code

afterwards. Therefore, we believe a good way to address the difficulty of code-to-

architecture mapping is simply to avoid it. This can be done through the regulation of

architecture implementation discussed above, for example, by using code separation.

• Architecture-prescribed code should be generated, and updated solely through code

generation. Information duplication has been identified as an important cause of

inconsistency. In the context of architecture-implementation mapping, this means

that the same information exists or is represented in both architecture and source

code. The best way to address the problem of information duplication is to follow the

principle of Don’t Repeat Yourself (DRY): every piece of knowledge must have a

single, unambiguous, authoritative representation within a system [72]. Code

www.manaraa.com

66

generation can be used in this process to automatically update representations of the

same information in different artifacts.

• Architecture changes should be modeled and manipulated as an independent software

artifact. Architecture changes play an important role in architecture-implementation

mapping, especially if we want to reduce the impact of code regeneration on non-

related code, and notify programmers about the changes that were just made. Explicit

modeling of architecture changes not only meets these demands, but also opens up the

opportunities for more advanced development activities, such as concurrent

architecture changes, and change replay. Moreover, the fact that software architecture

is located at a relatively high abstraction level and contains fewer constructs

compared with software programs also makes architecture change modeling a

possibility [155].

• Only “executions of significance” should be modeled in behavioral architecture.

Software architecture encompasses principal design decisions about a software

system, and it should not be expected to be a complete model of the system. This is

especially the case when it goes to system dynamics, which could contain

overwhelming details that, if represented in the architecture, would greatly degrade

the usability of software architecture. Thus, it is advocated in 1.x-way mapping that

only executions that are significant enough to be visible at the architecture level, or

“executions of significance”, should be modeled and mapped to code. Note that the

definition of significance is up to stakeholders or software architect to decide. Same

kind of system behavior may be seen of different importance in the development of

different systems. From this perspective, the term “significance” is actually as

www.manaraa.com

67

subjective as the term “principal” in the definition of software architecture discussed

in Section 3.1.1.

4.2 Overview

In this section, we present an overview of 1.x-way mapping. The name comes from the

fact that 1.x-way mapping only allows manual changes to be initiated in the architecture (“1”)

and a separated portion of the code (“.x”), with architecture-prescribed code updated solely

through code generation. 1.x-way mapping consists of four core mechanisms: deep separation,

an architecture change model, architecture-based code regeneration, and architecture change

notification. Figure 4-1 shows an overview of 1.x-way architecture-implementation mapping.

Software architecture in 1.x-way mapping is modeled as a configuration of components

with executions of significance (i.e. behaviors) defined by UML-like sequence diagrams and

state diagrams. Note that the amount of behavior modeling does not affect the effectiveness of

1.x-way mapping. In other words, 1.x-way mapping can also support situations where extensive

behavior modeling is involved, although this is not recommended as discussed earlier in this

chapter. The architecture modeling notation used in 1.x-way mapping is xADL 2.0, an

extensible, XML-based architecture description language. Java is used as the programming

language in this exposition. It is assumed that all the development activities shown in the figure

take place in an integrated software development environment (IDE) [76, 144, 145], where the

tools used for creating and managing the system at different abstraction levels are able to

communicate with each other and share information. A typical example of such an environment

is ArchStudio 4, an Eclipse-based tool integration environment where our work is performed.

www.manaraa.com

68

Figure 4-1: An overview of 1.x-way architecture-implementation mapping.

Architecture-
Prescribed Code

(Generated)

Code
Editor

Mapping
Tool

Implementation
Details

(User-defined)

Change

Notifications

Registration

Architecture
Editor

Architecture

Changes

Architecture
Change Model

Warning

Messages

Primitive

Operations

Architecture

Resources

Regenerated

Code

Recorded

Changes

www.manaraa.com

69

As shown in the figure, the implementation of each architecture component is separated

into two independent program elements: architecture-prescribed code and implementation

details. The former is automatically generated. It codifies all the externally visible information of

a component that is specified in the architecture, including its identity, interfaces, and properties.

The latter represents the internal implementation of a component that is to be manually

developed by programmers.

On top of the separated code, three tools (represented by ovals in the figure) work closely

in the IDE to map architecture changes to the code. Architecture Editor is responsible for the

manipulation of architecture models. In particular, it maintains an explicit change model that

records and classifies all the considered architecture changes. Mapping Tool is able to

automatically map most of the changes to code without requiring manual work on the code,

based on the fact that all the information about the kinds of changes (e.g. componentChanges,

linkChanges, etc.) is recorded in the change model. For those architecture changes that may

require modifications to user-defined code, change notifications are sent to Code Editor. In

response, warning messages are prompted in the code to highlight changes that have to be made.

To reduce the number of unnecessary messages, a plug-in could be built to allow programmers to

register for particular kinds of architecture changes. This part of the work is future work, which

is why it is represented by a dashed line in the figure.

1.x-way mapping consists of four core mechanisms: a deep separation mechanism, an

architecture change model, architecture-based code regeneration, and architecture change

notification. Each of them is introduced in the following subsections. Support for behavioral

mapping, and prevention of programmer-induced negative properties are also discussed.

www.manaraa.com

70

4.3 Code Separation and Integration

The 1.x-way mapping approach exploits a new code separation mechanism to decouple

architecture-prescribed code and user-defined details of each architecture component. The

separated code is explicitly integrated by a program composition mechanism (e.g. method calls,

software frameworks), which not only supports the integration of separated behavioral code, but

also enables mutual independence of separated code. This is essentially different from existing

code separation approaches, such as filling-in-blanks and subclassing.

4.3.1 Deep	
 Separation	

A new code separation mechanism, deep separation or linguistic separation, is developed

in 1.x-way mapping to decouple generated and non-generated code. It separates architecture-

prescribed code (generated) and user-defined code (non-generated) of each component into two

independent program elements (e.g. classes), and relies on program composition mechanisms

(e.g. method calls) to explicitly integrate separated code. Specifically, the user-defined code of a

component implements a set of low-level operations, or primitive operations, from which high-

level operations in the architecture-prescribed code are constructed. Meanwhile, available

architecture resources (e.g. required interfaces, architecture properties) are passed to the user-

defined code for use in the implementation of those low-level operations. This is essentially

different from existing code separation approaches such as filling-in-blanks and subclassing

described in Section 2.2.1. Those approaches are called shallow separation or spatial separation

in this work, because their code is physically separated, but is still coupled and implicitly

integrated by some inherent language relationship (same class, inheritance, etc.).

www.manaraa.com

71

Architecture‐prescribed code of a component comprises the implementation of all the

prescribed information about the component, including its identity, provided and required

interfaces, properties, and behavior definitions. It includes knowledge about architecture

topology and message exchange among components. In particular, architecture-prescribed code

of a component in 1.x-way mapping includes the implementation of a set of operations that are to

be provided by the component, and each of them is simply implemented by redirecting requests

to corresponding user-defined code of the component. Figure 4-2 shows a set of rules defined in

1.x‐way mapping to specify how the architecture-prescribed code of a component should be

generated. Notice that these rules are not intended to be exhaustive, given that extensibility is an

essential feature of software architecture, and additional rules may have to be defined when new

elements are added. In addition, all of them are based on the assumption that Java is used to

implement the architecture. With a different programming language used, the rules should be

modified correspondingly.

Figure 4-2: Rules of deep separation for architecture-prescribed code.

Rule #1: A class is generated for each architecture component as the
architecture‐prescribed code. The class name by default is the component
identity suffixed with “Arch”.

Rule #2: The generated class implements all the provided interfaces
declared by the corresponding component. Each method in a provided
interface, unless defined by a sequence diagram, is implemented by
redirecting the request to user-defined code.

Rule #3: Each required interface is implemented as an attribute of that
interface type in the generated class.

Rule #4: The architecture-prescribed code of a component maintains an
explicit reference to the corresponding user-defined code, and initializes
the reference by calling the setArch() method in its constructor method.

www.manaraa.com

72

User‐defined code provides primitive operations that architecture‐prescribed code uses to

construct higher‐level operations. It contains implementation details that are not specified in the

architecture, such as how a specific algorithm should be implemented, which system library to

use, domain‐specific code reuse, or the application of an implementation technology such as web

services, CORBA, Java RMI, etc. All these details are to be manually completed by

programmers. Compared with architecture‐prescribed code, which essentially codifies externally

visible characteristics of a component, user‐defined code represents the internal implementation

of a component. It does not communicate directly with other connected components, and is

completely hidden from the externals in 1.x-way mapping. Figure 4-3 lists the rules of deep

separation for user-defined code.

Figure 4-3: Rules of deep separation for user-defined code.

A calculator application is used as an example in this dissertation to illustrate how 1.x-

way mapping works. Its structural architecture is shown in Figure 4-4. This is not a complex

application. However, it provides concrete situations in which automatically maintaining the

architecture-implementation conformance is difficult. In short, the calculator works as follows.

The GUI component is responsible for collecting the user’s input of digits and operators, and

displaying both intermediate and final results; the Controller component accepts calculation

Rule #1: The user-defined code of a component implements all the
operations requested by the corresponding architecture-prescribed code.
In case an interface (e.g. required operations) is generated for this
purpose, the user-defined code should implement all the methods in the
interface.

Rule #2: The user-defined code of a component must maintain an explicit
reference to its architecture-prescribed code, and initialize the reference
through its provided operation, setArch.

www.manaraa.com

73

requests from GUI, and either pushes entered digits and operators to the corresponding stack or

sends them to Math Unit for calculation, depending on which state it is in and what the input

value is. The Register component saves the intermediate result that is to be displayed. Whenever

its value is changed, GUI is notified and updates its display field correspondingly.

Figure 4-4: Structural architecture of the calculator application.

List 4-1 shows the implementation of the Controller component with deep separation

enforced. Other components in Figure 4-4 can be implemented in the same way. Two classes

(ControllerArch, ControllerImp) and one interface (IControllerImp) are created for the

component. ControllerArch is architecture-prescribed code that is automatically generated. The

interface (IController) that it implements (thus, operations that are included: enterOperator and

enterDigit) and the references to connected components (lines 03-06) are all from definitions in

the architecture. Significantly, the operations in ControllerArch are implemented by simply

passing requests to the user-defined code ControllerImp (line 12 and 15). This goes through a

reference (_imp, line 02) to IControllerImp that is explicitly maintained in ControllerArch.

IControllerImp serves as a contract between ControllerArch and ControllerImp, and is also

Controller

Operator
Stack

Operand
Stack

Math Unit GUI

Register

push/pop push/pop save

update

execute
enterOperator
enterDigit

www.manaraa.com

74

automatically generated. It contains a list of operations that ControllerArch expects

ControllerImp to provide. One of them is setArch (line 19), which is essential to the

implementation of all architecture components, while the other operations in the list are

component specific. It is through setArch that ControllerArch passes itself as a reference to

architectural information to ControllerImp (line 09). What it also implies is the existence of a

variable (_arch, line 24) of the type ControllerArch, or architecture-prescribed code, in the

corresponding implementation ControllerImp, which is to be manually developed by

programmers. In the example, an outline of ControllerImp (lines 23-30) is also generated for

programmers to start with.

01: class ControllerArch implements IController{
02: IControllerImp _imp;
03: IOperatorStk _operatorStk;
04: IOperandStk _operandStk;
05: IRegister _register;
06: IMathUnit _mathUnit;
07: public ControllerArch(){
08: _imp = new ControllerImp();
09: _imp.setArch(this);
10: }
11: public void enterOperator(String opcode){
12: _imp.enterOperator(opcode);
13: }
14: public void enterDigit(String digit){
15: _imp.enterDigit(digit);
16: }
17: }
18: interface IControllerImp{
19: public void setArch(ControllerArch arch);
20: public void enterOperator(String opcode);
21: public void enterDigit(String digit);
22: }
23: class ControllerImp implements IControllerImp{
24: ControllerArch _arch;
25: public void setArch (ControllerArch arch){
26: _arch = arch;
27: }
28: public void enterOperator(String opcode){…}
29: public void enterDigit(String digit){…}
30: }

List 4-1: Applying deep separation to the implementation of Component Controller.

www.manaraa.com

75

Deep separation is able to prevent mistaken changes of generated architecture-prescribed

code given that programmers’ modifications to the code are precluded from the program element

where generated code is located (e.g. ControllerArch and IControllerImp in List 4-1). At this

point, a configuration management system (e.g. Subversion) can be used to ensure that

architecture-prescribed code (e.g. ControllerArch) be only updated through code regeneration by

the architect. A challenge that deep separation faces is explicitly integrating separated code,

whereas this is automatically done by the inherent language relationship with shallow separation.

In particular, this has to be done in the presence of frequent changes that may be made to both

architecture and source code during software development. The remainder of this chapter

specifically discusses how code integration and change management are handled.

4.3.2 Code	
 Integration	

The integration process is as suggested in Figure 4-1. The architecture information such

as references to other connected components is passed from architecture-prescribed code to user-

defined code; Meanwhile user-defined code provides primitive operations to architecture-

prescribed code to implement higher-level operations. This is essentially a process of program

composition, and can be done either through simple method calls or by building a source code

integration framework. In this study, we only use method calls to integrate separated code.

Specific analysis is also provided below about how a source code framework may be built for

integration.

A straightforward way of integrating separated code in 1.x-way mapping is using object

composition or method calls, as illustrated in List 4-1. Operations present in architecture-

prescribed code are simply implemented by calling the corresponding operation (e.g. with the

same signature) defined in user-defined code. Figure 4-5 further illustrates this by providing a

www.manaraa.com

76

high-level view of the integration process. Primitive operations in the figure represents a Java

interface that consists of a list of operations that the architecture-prescribed code expects its user-

defined code to provide. This is implemented as IControllerImp in List 4-1. What is special

about Figure 4-5 is that it shows two user-defined implementations providing the same set of

operations. This is to highlight the fact that specific implementations are encapsulated from the

architecture-prescribed code with deep separation enforced. The architecture-prescribed code

only sees the list of provided operations, without being aware of underlying different

implementations. The advantage of integrating code with method calls is that it is easy to

implement, and does not require redundant code. The disadvantage, however, is that it provides

little control over the integration process.

Figure 4-5: Integrating code by method calls.

In contrast, another way to integrate code is using a software framework, an abstraction

in which common code providing generic functionality can be selectively overridden or

specialized to provide specific functionality [75]. Figure 4-6 suggests an example of such a

framework. Compared with method calls, an integration framework not only integrates code, but

also gives developers a chance to customize the process to satisfy any special requirements, such

Architecture-
prescribed code

Primitive
operations

User-defined
implementation

1

User-defined
implementation

2

_imp

www.manaraa.com

77

as architecture-based dynamic adaptation. In addition, the use of an integration framework also

makes it possible for architecture-prescribed code and user-defined code of a component to run

on different machines, with the integration framework taking care of network-related

communication issues. The downside of using such an integration framework is that additional

application independent code is induced. In particular, it is often required that the deployed

application be deployed in an environment where the framework is installed.

Figure 4-6: An example of code integration framework.

The framework shown in the figure consists of two kernel classes, CompArch and

CompImp, which represent the base classes for architecture-prescribed code and user-defined

code of each architecture component. They encapsulate integration related activities from the

overlying application, and communicate with the underlying xRuntime to make method calls. It

is xRuntime that explicitly controls which specific operation in user-defined code is called when

a request from architecture-prescribed code arrives. The code below in List 4-2 is an example of

the generated architecture-prescribed code for a component based on this framework. The

request method (line 04) in the code is predefined in CompArch. It converts the incoming

operation request to a canonical format recognizable by xRuntime, where application specific

logics are applied before the request is redirected to the implementation developed by the

Architecture-
prescribed code

User-defined
code

CompArch CompImp

xRuntime
Integration
framework

www.manaraa.com

78

programmer. There, CompImp does a reverse process, and translates the received request back to

a regular method call.

01: class ControllerArch extends CompArch implements IController{
02: …
03: public void enterOperator(String opcode) {
04: request(“enterOperator”, opcode);
05: }
06: public void enterDigit(String digit) {
07: request(“enterDigit”, digit);
08: }
09: …
10: }

List 4-2: Generated code based on an integration framework.

The presentation above simply highlights another possibility for integrating code in 1.x-

way mapping, and is far from being a complete solution. More work is required concerning some

specific issues, such as encapsulation of function calls and configuration of processing logics.

Addressing some of these issues may require a functional programming language. The payback

of having such a framework is as discussed previously: full control can be obtained over how the

integration is done, and opportunities for dynamic reconfiguration and runtime reuse are opened

up. This is beyond the focus of this study, which is about maintaining architecture-

implementation conformance in software development.

4.3.3 Discussion:	
 Deep	
 Separation	
 vs.	
 Shallow	
 Separation	

As discussed in Section 2.2.1, separating generated code and non-generated code is not a

new idea and has been around for decades. An important difference between the 1.x-way

mapping approach and other code separation based approaches is the application of the deep

separation mechanism, which is supported by a set of change management mechanisms. The

change management of 1.x-way mapping is presented in next section. In this section, we

www.manaraa.com

79

highlight the advantages of deep separation over traditional shallow separation in the context of

architecture-implementation mapping.

As mentioned at the beginning of this section, deep separation separates the code of an

architecture component into two independent program elements, and relies on external program

composition mechanisms to explicitly integrate separate code. In contrast, shallow separation

relies on certain program built-in relationships (e.g. same class, inheritance, partial class) to

automatically integrate separated code. Due to this essential difference, the code they can protect,

the relationship between their separated code, and their potential usages are significantly

different as summarized below.

• Deep separation provides more comprehensive code protection. With shallow

separation, code integration is done in a static and rigid way. The code that can be

separated, and thus protected, is limited to those that can be integrated in the exact

pre-defined way and additional constraints are also inevitably induced. For example,

filling-in-blanks as discussed in Section 2.2.1 mixes generated and non-generated

code in the same program element; subclassing can only support code that can be

clearly separated with an inheritance relationship; partial class requires that separated

code cannot contain methods of the same signature. This is also an important reason

why existing code separation mechanisms often fail to protect behavioral code since

there is no appropriate language relationship that can support so. Deep separation, in

contrast, relies on a flexible external program composition mechanism (e.g. method

calls) to integrate separated code. The code that can be supported is relatively

independent of how the code is integrated. Thus, more kinds of code, including

behavioral code, can be supported.

www.manaraa.com

80

• What deep separation essentially reflects is the spirit of code library [82] and virtual

machine [119]. Deep separation enforces architecture-centric development:

architecture-prescribed code can only be updated through code generation from the

architecture. User-defined code plays the role of code library or programming

platform in this context, based on which architecture-prescribed code is generated.

For example, libraries of architecture implementations can be constructed for various

architecture features based on the operations provided by underlying user-defined

code without containing implementation details.

• Deep separation makes the separated code of each component mutually independent.

Should the code require regeneration later, only the architecture-prescribed code is

overwritten. The work on the user-defined code remains unaffected, unless the

architecture is radically changed as discussed in next section. Similarly, modifications

to user-defined code have no impact on the architecture-prescribed code, assuming

the required operations are still provided. This reduces the chance that inconsistency

may happen. Moreover, it gives both architect and programmers more freedom to

work on their own part compared with shallow separation mechanisms such as filling-

in-blanks and partial class.

• Finally, deep separation makes the usage of architecture information (e.g. services

provided by other connected components) in user-defined code explicit and

manageable. All accesses to architecture resources have to go through a handle

(_arch in List 4-1) maintained in user-defined code. This opens up opportunities for

advanced activities like architecture change requests discussed later in Section 4.4.3

that can be done based on static program analysis. In addition, prevention of user-

www.manaraa.com

81

induced negative properties is enabled based on deep separation. This is specifically

discussed in Section 4.4.4.

4.4 Change Management

Software artifacts are subject to constant changes during the development. Software

architecture and code are not exceptions. These changes significantly endanger the conformance

between the artifacts. Important techniques developed in 1.x-way mapping in this regard include

an architecture change model, architecture-based code regeneration, and architecture change

notification. We also discuss in this section how 1.x-way mapping could be extended to prevent

programmer-induced negative properties.

4.4.1 Architecture	
 Change	
 Model	

A significant challenge that 1.x-way mapping faces is mapping architecture changes to

the code after the architecture is first implemented. This consists of two specific tasks: mapping

changes to the architecture-prescribed code, and mapping across the separation boundary to the

user-defined code. In particular, different architecture changes often have different impacts on

the implementation of an architecture component. For example, redirecting a link between

components supposedly does not affect component implementations, given that an architecture

component is an independently deployable unit of composition. In contrast, removing an

interface from a component requires changes to both architecture-prescribed code and user-

defined code of the component. Thus, architecture change management in 1.x-way mapping

must be able to differentiate different kinds of architecture changes, and automatically map them

to code in specific ways.

www.manaraa.com

82

Figure 4-7 shows various types of architecture changes and how they are managed in 1.x-

way mapping. Considered changes include link changes, component changes, and behavior

changes. Of these different changes, link changes are relatively easy to handle, simply by

regenerating code that is responsible for bootstrapping the program and instantiating components

with connection information. For the rest of this dissertation, the focus will be on the mapping of

component changes and behavior changes to code. Note that Update Component and Update

Behavior both consist of a number of low-level operations, such as add interface to a component

or remove a participant from a sequence diagram. They are not shown in the figure for brevity.

Figure 4-7: Architecture changes in 1.x-way mapping.

Architecture

Change

Link

Change

Component

Change

Add Link

Update Link

Remove

Link

Add

Component

Update

Component

Remove

Component

Change Management Strategy

Regenerate corresponding
code only (e.g. bootstrapping
program); no impact on user-
defined code.

Send change notifications
to user-defined code.

Generate architecture-prescribed
code for new component.

Regenerate code & send
change notifications.

Behavior

Change

Add

Behavior

Update

Behavior

Remove

Behavior

Generate or regenerate code for
corresponding component; send
change notifications.

www.manaraa.com

83

To support the mapping of architecture changes to the code, an architecture change model

is maintained in 1.x-way mapping with extensions made to the xADL architecture description

language. Basically, all architecture elements are monitored, and all the considered changes

made to them are automatically recorded and classified. An initial design of the architecture

change model is shown below in List 4-3. As can be seen, a new element <archChange> (line

02) is added to the root (<xArch>) of the architecture description. Under the new element, there

are multiple <changes> elements (lines 03 - 11), each of which represents a change session that

includes a series of specific changes as listed in Figure 4-7. The status of each change session is

either “mapped” (line 03) or “unmapped” (line 09), depending on whether a map-to-code process

is done on the session or not. A new change session will be created automatically if the

architecture is modified, and no “unmapped” change session exists.

01: <xArch>
02: <archChange>
03: <changes status=”mapped”>
04: <compChange type=”add”> … </compChange>
05: <linkChange type=”remove”> … </linkChange>
06: … <!-- Other specific changes -->
07: </changes>
08: … <!-- Additional change sessions -->
09: <changes status=”unmapped”>
10: … <!-- Specific changes -->
11: </changes>
12: </archChange>
13: </xArch>

List 4-3: Basic structure of architecture change model.

Having an explicit architecture model can benefit many related activities, such as change

analysis, redo/undo, and change reuse. Some of these applications are future work and are further

discussed in Chapter 7. Different usages often have different requirements in the content of the

created change model. In the design of our architecture change model, we intentionally make it

independent of the following process of mapping to code. That said, the change model in 1.x-

way mapping contains much more information than those that are needed to either regenerate

www.manaraa.com

84

code or send change notifications as introduced in the following subsections. Basically, all the

architecture changes are recorded even though only a portion of them is of interest to the

mapping process.

4.4.2 Architecture-­‐based	
 Code	
 Regeneration	

In principle, all architecture changes require the update of architecture-prescribed code.

An easy approach to accomplish this is brute force regeneration. It completely regenerates code

for the architecture regardless of what is changed. As discussed in Section 2.3, this approach

suffers from the challenge of conflict resolution. In addition, complete code regeneration is also

not scalable in the sense that even a small, localized change may require regenerating a

disproportionately large part of the code. A recent code regeneration strategy is so called

incremental change, which only regenerates code for the changed portion, such as an added

interface or a removed link. This approach reduces the amount of regenerated code, and thus,

minimizes the impact of code regeneration to the rest of the system. The problem is that

incremental change may break the system structure and consistency if the regenerated portion is

in a highly cohesive entity, such as an architecture component [150]. Moreover, it is often hard

to clearly tell which specific part of the modified architecture element should be regenerating

code for, given that change impact analysis itself is still a research problem.

The 1.x-way architecture-implementation mapping approach uses an architecture-based

code regeneration mechanism that sits between complete regeneration and incremental change.

It addresses the above problems by only regenerating code for modified components. For each

modified component, complete regeneration is enforced. With complete regeneration for each

modified component, the integrity of component implementation is protected and structure or

inconsistency issues are avoided. Meanwhile, the property of loose coupling between

www.manaraa.com

85

components makes incremental change at the component level a reasonable design to reduce the

amount of code regeneration. Regenerating code for a specific component does not affect the

implementation of other components, and thus the consistency of the whole system. Figure 4-8

illustrates how architecture-based code regeneration is different from complete regeneration and

incremental change.

Figure 4-8: Code regeneration mechanisms.

It is important to note that link changes in 1.x-way mapping are still addressed by

traditional incremental change mechanism. That is, only corresponding code is regenerated. This

is based on the assumption that link changes represent changes of global architecture, and

regenerating corresponding code does not affect the structure integrity of each specific

component. It is especially the case when a bootstrapping program is used to start a system and

initialize components with the connection information, such as the myx.fw framework discussed in

Section 2.2.2. Architecture-based code regeneration discussed in this section is designed primarily

to address component changes, such as adding interfaces or associating a new behavior. At this

Complete

regeneration

Architecture-based

code regeneration

Incremental

change

Architecture
change

Regenerated
code

Architecture
component

Component
implementation

www.manaraa.com

86

point, not only architecture-prescribed code of the modified components has to be completely

regenerated, but also change notifications have to be sent to the user-defined code.

4.4.3 Architecture	
 Change	
 Notification	

In contrast with architecture-prescribed code, it is not possible to automatically update

user-defined code when architecture changes happen. If it were, we could simply move the part

that can be automatically updated to architecture-prescribed code to improve software

productivity. What can be done in general is to send change-related information across the

separation boundary to user-defined code. Specifically, two kinds of information can be

transferred: (1) what is changed in the architecture and (2) what needs to be changed in user-

defined code. In this study, information about (1) is called architecture change notification and

information about (2) is called architecture change request. In this dissertation, 1.x-way mapping

only supports architecture change notification. Specific analysis is also provided below about how

change requests may be generated, as a basis for future research.

An architecture change notification contains information describing what element

(interfaces, properties, etc.) is changed in the architecture. The architect’s comments when

making those changes may also be included to give programmers more information. Note that this

essentially addresses a problem of software architecture failure to capture design rationales that

was identified earlier. All the notifications are shown in the code editor in the form of warning

messages. In particular, the user-defined code of a component only gets notifications for changes

that are made to that component. This reduces unnecessary change notifications, decreasing the

manual analysis work needed to process the notifications. To further reduce the number of

unnecessary notifications, a plug-in could be built to allow programmers to register for particular

architecture changes. The registration can then be sent to and saved in the architecture as

www.manaraa.com

87

traceability information. When a registered change happens, notifications will be sent following

established traceability links.

In contrast, sending architecture change requests to user-defined code is essentially a

problem of change impact analysis [5], a topic about identifying what to modify to accomplish a

change. This is necessary because implementations in user-defined code may need specific

architecture information, such as details of a required interface. When the element is changed in

the architecture, related user-defined code should be updated correspondingly. Existing

solutions include the application of transitive closure, inference, and program slicing. However,

it remains to be seen how well these approaches can be applied in architecture-implementation

mapping.

What is special about 1.x-way mapping is that all the architecture information is accessed

explicitly through a single reference in user-defined code, as shown in Section 4.3.1. This

facilitates the identification of the places where a changed architecture element is used. What can

be done is to create traceability links between architecture elements and their usages in user-

defined code through static program analysis. Based on the trace information, change requests

can be generated. For example, if a component interface being used by user-defined code is

removed, a warning message should be displayed in corresponding lines of user-defined code,

just like a compiler works in a programming IDE. The challenge, however, is keeping these

traceability links valid given that source code is under constant change as well.

Both architecture change notifications and requests represent an important improvement

over existing architecture-implementation mapping approaches. None of existing approaches

cited earlier support notification during software development. At best, a program complier is

used to detect inconsistencies in the code and return warning messages.

www.manaraa.com

88

4.4.4 Discussion:	
 Prevention	
 of	
 Programmer-­‐induced	
 Negative	
 Properties	

As introduced previously, 1.x-way mapping is able to protect architecture-prescribed code

from being contaminated when developers work on user-defined code. What this essentially

means is that the code does not lose properties of the architecture (e.g. specified elements).

However, programmer-induced changes in user-defined code may also include new negative

properties [72]. For example, the implementation of a component may (inappropriately) reference

another component that is not connected to it in the architecture, obviously breaking the

architecture-implementation conformance. Because programmers are granted full control over the

user-defined code, it is technically hard to prevent this from happening during software

development. As a result, most existing architecture-implementation mapping approaches either

ignore the problem or simply rely on the after-the-fact consistency checking to detect it.

With 1.x-way mapping, a correct-by-construction method, the programmer-induced

negative properties can be avoided from the very beginning with appropriate tools. Figure 4-9

illustrates how this may be done based on deep separation of 1.x-way mapping. Dashed lines in

the figure represent illegal accesses from a component to the code of another unconnected

component. Preventing illegal access to the user-defined code of a component is relatively

straightforward. As introduced in Section 4.3, the user-defined code of a component does not

communicate directly with other connected components with deep separation enforced. What can

be done is to apply an access control mechanism (e.g. name scrambling), so that the user-defined

code of a component is only accessible to its architecture-prescribed code, hidden from clients of

the component. Illegal accesses to user-defined code from other components are thus prevented.

www.manaraa.com

89

As to the architecture-prescribed code of a component, it is automatically generated and is

not meant to be edited by programmers in 1.x-way mapping. If the architecture-prescribed code of

a component is only accessible to the architecture-prescribed code of other components, illegal

accesses from the user-defined code can be avoided as well. One possible way to do this is to

expose the services, instead of the direct reference, of a component’s architecture-prescribed code

to other components and hide the mapping of services to references from programmers. As a

result, the architecture-prescribed code of a component is accessed in a pre-defined way that is

only understandable to the machine. A specific example of such an application is [35], where off-

the-shelf middleware was used to implement architecture connectors between components.

Figure 4-9: Prevention of programmer-induced negative properties.

Finally, user-defined code may also invalidate the architecture by not using certain

architecture elements (e.g. a required interface). This can be resolved through the static program

Architecture-
prescribed code

User-defined
code

1

2
Architecture-

prescribed code

User-defined
code

Component A Component B

1

2

The user-defined code of a component can only be accessed by
its architecture-prescribed code (e.g. through name scrambling).

The architecture-prescribed code of a component can only be
accessed by the architecture-prescribed code of other components
(e.g. through framework encapsulation).

www.manaraa.com

90

analysis mentioned in Section 4.4.3, and is not detailed here. Supporting and evaluating theses

approaches is not part of this dissertation, and represents future directions for 1.x-way mapping.

4.5 Support for Behavioral Mapping

An essential task of architecture-implementation mapping is to have the modeled

information correctly preserved in the code. For 1.x-way mapping to support behavioral

mapping, it is important that (1) system behaviors be modeled in a form that is amenable to code

generation; (2) there is a way to enforce deep separation to the corresponding code. The change

management mechanisms of 1.x-way mapping can then be applied as presented earlier. In this

study, we simply reuse pragmatic techniques for the above two activities with necessary

adaptations made. This allows us to focus on the consistency control of 1.x-way mapping. Each

of these two activities, however, could be or is a research area. With new approaches to them

available, 1.x-way mapping could support more behavioral models.

4.5.1 Architecture	
 Behavioral	
 Modeling	
 in	
 1.x-­‐Way	
 Mapping	

Architecture behavioral modeling in 1.x-way mapping is based on limited UML state

diagrams and sequence diagrams. Our adapted state diagram captures the runtime behavior of a

specific architecture component in terms of its state changes. Our sequence diagram defines a

sequence of interaction calls between a component and its connected components with respect to

one of its provided operations. Furthermore, in our current implementation, both call sequences

and state changes do not contain advanced control structures such as iteration and branch. In

addition, all object-specific features are not supported in our diagrams since the modeled elements

are components (which may e.g. be implemented as a set of classes) rather than objects in the

object-oriented sense.

www.manaraa.com

91

Figure 4-10 presents an example of two behavioral diagrams defined for the calculator

application introduced in Section 4.3.1. The state diagram on the left models state changes of the

Controller component. It starts from the state of WaitForInput, and switches between

WaitForNumber, WaitForOperator, and EnteringNumber in response to invocations of its

provided operations, enterDigit, enterOperator, and enterMR (i.e. memory recall). For some state

transitions, an additional action is also specified (following “/” in the transition label) to be called

before the target state is entered.

The sequence diagram on the right depicts how the MathUnit component collaborates with

the OperandStack component with respect to its execute operation, assuming a binary operator is

to be calculated. As shown in the figure, MathUnit first fetches two operands from OperandStack

by calling its provided pop method, then makes the calculation through a self message call, and

finally pushes the result back to the stack with another message call. Note that all the parameter

passing and value assignments are explicitly represented in the figure. This is not required in a

standard UML sequence diagram, and is an important adaptation that we made in 1.x-way

mapping to facilitate behavioral code generation. This is further discussed later in this section.

Figure 4-10: Example of a behavioral architecture definition.

WaitFor
Operator

WaitFor
Number

WaitFor
Input

Entering
Number

enterDigit

enterDigit

enterDigit

enterDigit

enterOperator
/ replaceOperatorenterOperator

/ pushOperator

enterOperator
/ pushOperator

OperandStackMathUnit

double v1 = pop();

double v2 = pop();

double r= executeBinary
 (opcode, v1, v2);

push(r);

execute(opcode)

enterMR
enterMR

enterMR

enterMR

www.manaraa.com

92

Overall, a state diagram in 1.x-way mapping describes all of the possible states that a

particular architecture component can get into and how the component’s state changes as a result

of events (i.e. invocations of the component’s provided operations) that reach the component. A

state diagram is focused on describing the behavior of a single component in response to external

stimuli. As mentioned earlier, a standard UML state diagram contains many features, such as

conditional transitions, superstates, and entry/exit events. In this study, however, only selected

elements are implemented, allowing us to focus on the mapping of state diagrams to code.

Specifically, a state diagram of 1.x-way mapping consists of the following two key elements:

• State. A state is represented by a rounded rectangle labeled with the state name in a

state diagram. A component starts from an initial state, represented by the closed

circle, and can end up in an optional final state, represented by the bordered circle. A

state can either change to another state or remain in the original state when an event

arrives, but only one transition can be taken out of a given state.

• Transition. Transitions are lines with arrowheads in a state diagram. A transition

represents movement from one state to another, and is associated with a transition

label. The format of a transition label is: Event / Action. Event is required, and

triggers the transition. In our current implementation, an event is simply implemented

as the invocation of a method that is provided by the component. Events can come

from the external world, such as end-user input, external sensors, etc. Action is

optional. It represents an (usually user-defined) operation that is to be called before

the target state is entered. This gives user an opportunity to customize the state

transitions.

www.manaraa.com

93

A sequence diagram in 1.x-way mapping complements a state diagram by describing the

interactions among architecture components. It shows a number of participating components and

the messages (i.e. procedure calls) that are passed between these components with respect to an

operation in one of a component’s provided interfaces. Note that it is not recommended in 1.x-

way mapping to make a sequence diagram for every single operation of a component. Instead, we

believe sequence diagrams are most appropriate for those operations that exhibit interesting

behavior, or “executions of significance” as described at the beginning of this chapter. This

distinguishes our approach from MDD approaches that try to make UML a programming

language, as discussed in Section 3.1.2.

Similar to state diagrams, we limit the standard UML sequence diagram: features like

frames and new/delete messages are not included. The resulting sequence diagram primarily

consists of:

• Participant. A participant component is shown as a box at the top of a dashed

vertical line labeled with the component name. The leftmost participant is the

component (called host component) whose operation is defined in the sequence

diagram. From left to right are the components that the messages are sent to.

• Message. A message depicts the interactions among participants. It could be

asynchronous event notifications, synchronous procedure calls, and so on. In our

adapted sequence diagram, all this information is encapsulated and represented in

architecture connectors and is not explicitly represented in a sequence diagram. In

addition, a message must be labeled with the name and parameters of the

corresponding message call. This is specifically discussed later in this section.

www.manaraa.com

94

Generating code from state diagrams is a common practice with many CASE tools [106].

In contrast, generating code from UML sequence diagrams is rarely supported. This is partially

because some necessary information for code generation is missing in standard sequence

diagrams, such as object assignment and how objects are passed between message calls [46]. In

particular, the implementation of a sequence diagram is often found spread over the code (e.g.

classes) of the participants that are involved [118]. This makes the code generation process very

difficult since the code generator not only needs to identify the right place to generate code, but

also has to deal with conflicts caused by diagrams that have overlapping message calls.

In response, we added two additional restrictions to our adapted sequence diagram. First,

variable assignments and parameter passing must be explicitly represented for each message call.

In Figure 4-10, variables v1, v2, opcode, and r are thus explicitly assigned and passed. Second,

all message calls must start from the component whose operation is defined by the diagram. In

other words, only operations that are directly called in the specified provided interface operation

are considered in the diagram. With these restrictions, code can be easily generated. There are

still situations where minor editing may be needed on generated code, for example, to deal with

Java exceptions that cannot be captured in a sequence diagram. This is a limitation that is

imposed by the current modeling technology, and is not inherent to the design of 1.x-way

mapping.

4.5.2 Applying	
 Deep	
 Separation	
 to	
 Behavioral	
 Code	

Once system dynamics are modeled in the supported form so that code can be

automatically generated, the next challenge is finding a way to apply deep separation to the

corresponding implementation. The methodology presented in Section 4.3.1 is still applicable,

with architecture-prescribed code and user-defined code separated into two independent classes.

www.manaraa.com

95

A difference is how the operation specified by a sequence diagram is implemented in the

architecture-prescribed code. Instead of passing the request to user-defined code, the

implementation of the operation is now populated from what is defined in the diagram with each

message call directly translated to a line of code. List 4-4 is a portion of the generated

architecture-prescribed code of Math Unit based on what is defined in Figure 4-10. The

implementation of the execute operation (lines 04-07) directly comes from the corresponding

diagram. Note that a reference to the target component is prefixed to each interaction call (e.g.

_operandStk before pop). This is a variable that was created during code generation, which is

elaborated in next chapter.

01: class MathUnitArch implements IMathUnit{
02: …//The basic structure is not changed.
03: public void execute(String opcode){
04: double v1= _operandStk.pop();
05: double v2= _operandStk.pop();
06: double r= executeBinary(opcode, v1, v2);
07: _operandStk.push(r);
08: }
09: …//The implementation of other operations
10: }

List 4-4: Generated code from a sequence diagram.

Applying deep separation to the implementation of our state diagram is based on the state

pattern [53]. Again, no changes are required on user-defined code and the contract interface

compared with what is presented in Section 4.3.1. A primary change of architecture-prescribed

code is that multiple classes are generated, with each class corresponding to a specific state of

the diagram. A class named xxxArch is also created as presented earlier, where all the structure

information of the component (e.g. references to other connected components, provided

interfaces, etc.) is implemented, serving as a container that the state classes reference to. Figure

4-11 shows the basic structure of the architecture-prescribed code of Controller, whose state

changes are defined in Figure 4-10.

www.manaraa.com

96

Specifically, three kinds of classes are generated. ControllerArch maintains a state

variable that represents the current state of the component, and provides a setState method to

change the current state. The operations in ControllerArch then redirect requests to the current

state since they may but need not be implemented differently in different states. Note that only a

portion of ControllerArch is shown in the figure, while the remainder (e.g. the reference to user-

defined code) is as defined in Section 4.3.1. ControllerState is the abstract class that defines the

behavior that a particular state of the component must have. ControllerWaitForInputState and

the other three classes next to it are subclasses of ControllerState. Each implements a specific

state. Operations in these subclasses are implemented by (1) calling the associated action if there

is one defined in the state diagram; (2) calling the same operation in user-defined code where

state-independent activities (e.g. system logging) may be specified; (3) identifying the successor

state in case a state transition is triggered.

Figure 4-11: Structure of the architecture-prescribed code generated from a state diagram.

ControllerArch

enterDigit()

enterOperator()

setState()

ControllerState

ControllerWaitFor

InputState

ControllerWaitFor

NumberState

enterDigit()

enterOperator()

enterDigit()

enterOperator()

enterDigit()

enterOperator()

ControllerWaitFor

OperatorState

enterDigit()

enterOperator()

ControllerEntering

NumberState

enterDigit()

enterOperator()

ctx

state

state.enterDigit();

pushOperator(); //(1)

ctx._imp.enterOperator(); //(2)

ctx.setState(ctx.WaitForNumberState); //(3)

www.manaraa.com

97

List 4-5 further illustrates the generated code from a state diagram by showing a portion

of ControllerArch’s code that directly comes from the diagram. As can be seen, a list of variables

(line 5 - 8) is explicitly maintained in the generated class to represent all the possible states that

the component may get into. A variable state is also created, maintaining the current state of the

component. In addition to initializing user-defined code as presented in Section 4.3.1, the

constructor method (lines 11 - 18) now also needs to initialize state variables and set the initial

state based on what is defined in the state diagram. A special method called setState (lines 20 -

22) is generated for the purpose of changing the current state. Finally, all the provided operations

(e.g. enterOperator shown in line 24) of the architecture-prescribed code are now implemented

by redirecting requests to the current state, which could be ControllerWaitForInput,

ControllerWaitForNumber, ControllerWaitForOperator, or ControllerEnteringNumber.

Corresponding operations are implemented in these classes just as shown in Figure 4-11.

01: class ControllerArch implements IController{
02:
03: … //References to user-defined code, other components.
04:
05: ControllerState ControllerWaitForInput;
06: ControllerState ControllerWaitForNumber;
07: ControllerState ControllerWaitForOperator;
08: ControllerState ControllerEnteringNumber;
09: ControllerState state = null;
10:
11: public void ControllerArch(){
12: … // Initialization of user-defined code
13: ControllerWaitForInput = new ControllerWaitForInputState(this);
14: ControllerWaitForNumber = new ControllerWaitForNumberState(this);
15: ControllerWaitForOperator = new ControllerWaitForOperatorState(this);
16: ControllerEnteringNumber = new ControllerEnteringNumberState(this);
17: setState(ControllerWaitForInput); // Set the initial state
18: }
19:
20: public void setState(ControllerState newState){
21: state = newState;
22: }
23:
24: public void enterOperator(String opcode){
25: state. enterOperator(opcode); // Redirect to current state.
26: }
27:
28: …//The implementation of other operations
29: }

List 4-5: Generated code of ControllerArch.

www.manaraa.com

98

4.6 Revisiting Architecture-Implementation Mapping

As presented in Section 1.3, the hypothesis of this study is that 1.x-way mapping supports

architecture-centric development, can be applied in the development of a realistic system to

prevent its architecture-prescribed code from being manually changed by programmers, and

supports automatic mapping of structural and behavioral architecture changes to code. In this

section, we explore the hypothesis by comparing 1.x-way mapping with the existing architecture-

implementation mapping approaches described in Chapter 2. Significantly, we present a

framework consisting of a set of important criteria, which form a perspective for evaluating a

specific architecture-implementation mapping approach. The purpose is to highlight how our

approach contributes to architecture-implementation conformance. Meanwhile, some remaining

challenges are also identified, making the scope of this research study clearer.

Table 4-1 compares architecture-implementation mapping approaches. The approaches are

organized into three categories, one-way mapping, two-way mapping, and 1.x-way mapping. The

comparison is made along eight dimensions:

• Architecture model highlights the type of architecture information that can be mapped

to or from the code;

• Generated code depicts the form of architecture-prescribed code that is generated;

• Architecture configuration changes, Architecture component changes, and

Architecture behavioral changes describe how corresponding changes are mapped

from the architecture to the code;

• Changes of Architecture-Prescribed Code and Changes of Implementation Details

represent two kinds of changes that are initiated by programmers, and may break the

architecture-implementation conformance.

www.manaraa.com

99

 One-way mapping Two-way mapping 1.x-way mapping

Architecture

model

Structure, behaviors,

non-functional

properties.

Structure only.

Structure, executions of

significance.

 Generated code Complete program.

Code fragments and

skeletons that are to be filled

with details by developers.

An independent program

element (for each

component) that cannot be

manually modified.

A
rc

hi
te

ct
 in

iti
at

ed

Architecture

link changes

Completely regenerate

the code regardless of

what is changed in the

architecture.

Corresponding code is

automatically updated to

reflect link changes.

Automatically mapped to

the code by regenerating

the bootstrapping

program.

Architecture

component

changes

Regenerate code for the

changed part of the

component. Unrelated code

remains (e.g. with EMF’s

JMerge). Change

notification is not supported.

Completely regenerate

code for the changed

components, and send

change notifications if the

user-defined code needs to

be updated.

Architecture

behavior

changes

Cannot be mapped to the

code through code

regeneration. Have to be

done manually.

Completely regenerate

code for the changed

components, and send

change notifications if the

user-defined code needs to

be updated.

Pr
og

ra
m

m
er

 in
iti

at
ed

Changes of

architecture-

prescribed code Manual changes are

not allowed in the

code.

Mapped to the architecture

through reverse engineering

or roundtrip engineering,

both of which are of high

complexity level.

Manual changes of

architecture-prescribed

code by programmers are

not allowed.

Changes of

implementation

details

Rely on the discipline or

program compiler to avoid

new negative properties.

Programmer-induced

negative properties may be

avoided with additional

tools built as discussed in

Section 4.4.4.

Table 4-1: A comparison of architecture-implementation mapping approaches.

www.manaraa.com

100

The table indicates how these potential problems can be handled. As presented in the

table, 1.x-way mapping has the following advantages over existing one-way mapping and two-

way mapping approaches.

• More practical with current modeling and code generation technologies. The models

supported by 1.x-way mapping capture system structure and some executions of

significance (i.e. behaviors). Correspondingly, generated code is architecture-

prescribed, separated from user-defined code via the deep separation mechanism.

This is more practical compared with complete modeling and full code generation of

one-way mapping. In contrast, most two-way mapping approaches currently can only

(partially) support the mapping of structural architecture to the code. In practice, its

generated code is often mixed with user-defined implementation details, given the

limitations of current code separation mechanisms. 1.x-way mapping’s position in the

middle represents an advantageous level of modeling at this point in the evolution of

software development technology. We believe it mixes just the right amount of

modeling with programming to maximize the effectiveness of both. Moreover, 1.x-

way mapping can be easily extended to support additional models with the

development of corresponding technologies.

• A solution to architecture changes. 1.x-way mapping explicitly records and classifies

architecture changes in an architecture change model, analyzes and refines recorded

changes, and maps different kinds of architecture changes in specific ways. None of

these features is supported by either one-way mapping or two-way mapping. Instead,

all the existing approaches treat architecture changes simply as ordinary artifact

changes and map them to code through complete code regeneration or incremental

www.manaraa.com

101

changes mentioned earlier. This is obviously insufficient given that different

architecture changes may have different impacts on the source code, and some

changes combined together may not even affect the code at all.

• Regulation of code changes. As discussed in this chapter, programmers’ manual

changes to the code can invalidate the architecture by changing architecture-

prescribed code, inducing new negative properties, or voiding certain architecture

specifications by not making use of it. Of these different changes, 1.x-way mapping

can prevent mistaken changes of architecture-prescribed code by programmers. With

additional tools, 1.x-way mapping could also resolve the last two challenges as

discussed earlier in Section 4.4.4. This is our future work. Two-way mapping

approaches to certain extent can also prevent architecture-prescribed code from

manual modifications. Some of them (e.g. ArchJava) can even guarantee that no new

negative properties are induced in the code with the help of programming rules and

compliers.

• Support for behavioral mapping. All the change management features described

above can be applied to both structural and behavioral architecture in 1.x-way

mapping. This represents another dimension along which our approach advances

current technology. This is based on two important insights: (1) only executions of

significance should be captured in behavioral architecture specification; (2) the

application of deep separation. The first insight alleviates the challenge of complete

modeling that one-way mapping faces. The second insight addresses the difficulties

of clearly separating generated behavioral code from user-defined code that most

two-way mapping approaches face. As discussed earlier, deep separation actually

www.manaraa.com

102

reflects the spirit of code library and virtual machine. From this perspective,

behavioral architecture can be implemented just as part of the architecture-prescribed

code that is generated upon a set of low-level operations provided by programmers.

Finally, 1.x-way mapping also has a number of limitations. Some of these limitations are

shared by all the existing architecture-implementation mapping approaches, such as not being

able to support the mapping of non-functional properties (e.g. security, reliability, etc.) and

system dynamics that are modeled using some expressive formal methods (e.g. some types of

process algebra). Some other limitations, however, are specific to the design of 1.x-way

mapping. First of all, 1.x-way mapping induces one more layer of indirection in the

implementation of each architecture component. This may not noticeably affect the system

performance given current computational power, but it brings additional challenges when it goes

to system integration. In addition, our current investigation of 1.x-way mapping has focused on

centralized applications written in object-oriented languages. It remains to be seen how other

programming paradigms (e.g. functional programming) and applications where the separated

code may be run on different machines can be supported.

www.manaraa.com

103

5 Implementation

1.x-way architecture-implementation mapping is implemented as a tool named xMapper in

ArchStudio 4, a tool integration environment that is fully integrated within the Eclipse platform as

a plug-in project. This chapter begins with an introduction of the implementation environment,

Eclipse and ArchStudio 4. After that important implementation tasks and some challenges are

specifically discussed, including architecture change recording, code generation, and change

notifications. An application scenario is then presented to illustrate how xMapper may be used in

practice to maintain architecture-implementation conformance. Finally, reflections and lessons

learned from the implementation experience are summarized at the end of the chapter.

5.1 Implementation Environment

As described in Section 4.2, 1.x-way mapping runs in an integrated software development

environment (IDE) so that tools used for creating and managing the system at different abstraction

levels are able to communicate with each other and share information. A typical example of such

an environment is Eclipse, or particularly ArchStudio 4, where the development activities of

architecting and programming for an application co-exist. Another advantage of implementing our

approach in such an environment is that the developed tool can be potentially distributed and

deployed with the integration environment. This section provides an overview of Eclipse and

ArchStudio 4, with the focus on their features (e.g. Eclipse’s JET code generation engine) that are

used in the implementation work.

www.manaraa.com

104

5.1.1 Eclipse	

Eclipse is an open development platform comprised of extensible frameworks, tools, and

runtimes for building, deploying, and managing software across the lifecycle. The Eclipse

platform is designed to provide tool providers with mechanisms to use and rules to follow, that

lead to seamlessly-integrated tools. Typical examples of these Eclipse-based tools include Eclipse

Java development tools (JDT) for Java, Eclipse Modeling Framework, the JUnit testing

framework, and our ArchStudio 4 architecture development environment that is introduced later

in this section. An important concept of Eclipse is plug-in, which is the smallest unit of Eclipse

platform function that can be developed and delivered separately [23]. A small tool is written as a

single plug-in, whereas a complex tool may have its functionality split across several plug-ins.

Each Eclipse plug-in contributes to the whole in a structured manner, may rely on services

provided by another plug-in, and each in turn may provide services on which yet other plug-ins

may rely. Specifically, each plug-in has a manifest file declaring its interconnections to other

plug-ins. The interconnection model is simple: a plug-in declares any number of named extension

points, and any number of extensions to one or more extension points in other plug-ins. A primary

advantage of this plug-in mechanism is that each specific plug-in can be more readily reused to

build applications not envisioned by the original developers of the plug-in. It represents an

important extension mechanism of Eclipse. This is an important reason that many people think

“the Eclipse platform is an IDE for anything, and for nothing in particular”.

Even the Eclipse platform itself is portioned by the plug-in mechanism. Figure 5-1 shows

the major components, and APIs, of the Eclipse platform. The kernel (runtime system) is based on

Equinox, an implementation of OSGI framework [62]. All basic functionalities are plug-ins built

on top of the kernel, including the Eclipse workbench and workspace.

www.manaraa.com

105

Figure 5-1: The architecture of the Eclipse platform [23].

All the components except Platform Kernel shown in the figure are integrated into Eclipse

in the form of plug-ins. Even a portion of the Eclipse kernel or runtime is implemented as plug-

ins. Generally speaking, Workbench provides both UI and non-UI behavior specific to the Eclipse

IDE itself, such as projects, project natures, editors, views, and actions. Workspace plug-ins

display and store user files as projects, source code, and so on. Team is a group of plug-ins

providing services for integrating different types of source code control management systems (e.g.

Subversion) into the IDE. Help plug-ins provide documentation for the Eclipse IDE. Finally, JDT

and PDE plug-ins are usually shipped with the Eclipse platform to support development of Java

programs and user-defined Eclipse plug-ins.

www.manaraa.com

106

Eclipse Java Emitter Templates (JET) [44] is a template-based code generation engine that

was built on the Eclipse platform. The original version of JET (JET1) is part of the Eclipse

Modeling Framework (EMF), while the new version of JET (JET2) includes a number of new

features and moved to the Eclipse Model To Text (M2T) project. JET2 operates in the context of

Eclipse, and itself is an Eclipse plug-in. It is used in the implementation of the 1.x-way mapping

approach to build a code generator as introduced later in next section.

The JET code generation engine loads an XML document that contains code generation

parameters, follows user-defined JET templates that consist of both target text (source code in this

case) and control tags, and finally generates source code. The generated code could be Java, C, or

even some non-executable documents, depending on what is defined in the templates. In

particular, Eclipse JET2 supports loading XML documents, and navigating them using XPath

expressions [152]. This facilitates the implementation of 1.x-way mapping since the xADL

architecture description is XML.

JET2 also provides standard JET tag libraries that make it possible to create relatively

readable templates (compared with templates of JET1 that are embedded with Java scriptlets).

Examples of these tags include <c:choose> (conditionally dumping text depending on the value),

<c:get> (writing out the result of an XPath expression), and so on. These tags are used in JET

templates to control the code generation process. In addition, JET can be extended with user-

defined tag libraries. This is useful when the standard tag library cannot meet certain code

generation needs. Finally, JET2 can read .java files and access the information in JET templates.

This is a useful feature for our implementation, considering that some java interface files need to

be loaded to generate corresponding methods that are specified in the interface files.

www.manaraa.com

107

5.1.2 ArchStudio	
 4	

ArchStudio 4 is an architecture development environment integrated within the Eclipse

platform as a plug-in project. It supports developing, visualizing, and analyzing architecture

models using the xADL language introduced in Section 3.1.2. ArchStudio 4 follows the Myx

architecture style and is built upon the myx.fw framework described in Section 2.2.2. Users can

extend xADL with new features, and automatically generate libraries used for those new features.

This makes ArchStudio an ideal platform for investigating new architectural approaches and

research directions. In addition, ArchStudio has been used in several companies and universities.

However, ArchStudio did not have an automated architecture-implementation mapping tool

before xMapper - the 1.x-way mapping tool was developed. With xMapper built and integrated,

ArchStudio is now upgraded in terms of support for architecture-centric development.

Similar to Eclipse, extensibility is an important feature of ArchStudio in the sense that

new tools can be relatively easily built and integrated into the ArchStudio environment. On the

one hand, ArchStudio has provided a number of ancillary tools, such as Archipelago, ArchEdit,

AIM Launcher, and TypeWrangler. These tools support some essential activities of architecture-

centric development, and can be extended to address new architecture concerns. For example,

modeling a new architecture concern can be done by adding a new xADL schema, followed by

development of Archipelago plug-ins to add visualization support for the schema. On the other

hand, new tools that are independent of the tools mentioned above can also be built and integrated

with ArchStudio for the purpose of some other development activities, such as software

traceability, product line architectures, and the architecture-implementation mapping focused in

this study. Again, this process includes the activities of developing new xADL schemas and

specific tools to explore new features.

www.manaraa.com

108

Archipelago is ArchStudio’s graphical editor that provides a symbolic point-and-click

boxes-and-arrows editing interface. The current version of Archipelago is focused on structural

architecture modeling. It supports the action of adding/removing architecture components,

interfaces, and links. With regarding to behavioral modeling, only a basic statechart editor was

built in Archipelago with many essential features missing, such as identification of a triggering

event for a transition. Sequence diagrams, necessary for this study, were not supported in

Archipelago. As described earlier in this section, this problem can be solved based on the

extensibility support of Archipelago, and particularly its BNA framework.

Central to Archipelago is a framework called BNA (Boxes N Arrows), which resembles

other graphical editing frameworks such as GEF and JGraph. BNA consists of a number of basic

elements, including Things, ThingPeer, BNA Model, BNA Logics, and so on. These elements

encapsulate low-level details that control things like how a specific architecture element (e.g.

component) is rendered and displayed, and also provide APIs for the overlying application to

customize the display of architecture to satisfy their special needs. This to a great extent facilitates

modeling of new architecture elements. In particular, the BNA framework also follows a modular

design, and can be easily extended to address new modeling concerns. For example, the

information of each modeling element and its displaying characteristics are separated into two

independent elements (BNA Thing and ThingPeer) in BNA.

ArchEdit is another useful tool of ArchStudio that provides a graphical user interface to

syntactically edit software architecture specifications. ArchEdit depicts an architecture description

graphically in a tree format, where each node can be expanded, collapsed, and edited like many

XML editors. Significantly, the ArchEdit tree is automatically populated from the underlying

www.manaraa.com

109

xADL schemas. It does not have to be changed to provide support for new schemas. This makes

ArchEdit a free low-level graphical editor for users who define new xADL schemas.

5.2 Implementation Tasks

This section specifically introduces the implementation of 1.x-way mapping. It starts with

an explanation of how ArchStudio 4 is extended to support sequence diagram and structure

diagram modeling. As discussed in Section 4.5, this is a task that is not inherent to 1.x-way

mapping, but it is necessary for us to further explore the claimed capabilities of 1.x-way mapping.

The implementation of 1.x-way mapping itself consists of four specific tasks: (1) recording

architecture changes; (2) analyzing and refining changes; (3) building a code generator; (4)

sending change notifications. Task (1) is implemented by adding recording logics to an existing

ArchStudio tool, Archipelago. It is relatively independent of Task (2), (3), and (4), which together

form Mapping Tool shown in Figure 4-1. They communicate through production and

consumption of the constructed architecture change model. The implementation of each task is

presented in the following sections.

5.2.1 State	
 Diagram	
 Editor	
 and	
 Sequence	
 Diagram	
 Editor	

A sequence diagram editor and a state diagram editor are built into the Archipelago

modeling environment as part of our implementation work. Based on them, users can create and

manipulate the adapted sequence diagrams and state diagrams described in Section 4.5.

Corresponding implementation work includes the creation of new xADL schemas and

development of the modeling interface on the basis of the BNA framework. During this process,

we closely followed the provided tutorials of xADL and ArchStudio. Figure 5-2 and Figure 5-3

below show screenshots of the developed diagram editors.

www.manaraa.com

110

Figure 5-2: A screenshot of the state diagram editor.

As shown in the figure above, the developed state diagram editor supports the creation of

states, transitions, and identification of triggering event for a specific transition. The black dot

represents the initial state of the diagram. What is not shown in the figure is how a state diagram

can be associated with a specific architecture component. This is done through an explicit

selection of the corresponding component in a pop-up list when creating a state diagram. The

underlying xADL description of a state diagram is not shown here due to its lengthy details and

the focus of this study. In short, each state diagram is modeled as a statechart element in the

xADL description. It consists a number of child elements, including description, linkedComp,

state, and transition. For the elements of state and transition, there can be more than one and each

contains further details about corresponding elements, such as state type (initial, normal, final),

triggering event, and target state.

www.manaraa.com

111

Figure 5-3: A screenshot of the sequence diagram editor.

Figure 5-3 is a screenshot of the developed sequence diagram editor in Archipelago. The

text box at the top of the figure represents the operation that is depicted by the diagram. It is

specified at the beginning of creating a sequence diagram. The captured context menu lists several

things that can be done in a sequence diagram editor, such as adding a new participant, adding a

new message, and so on. The editor also facilitates selecting an interaction message. After the

corresponding menu item is selected, a small selection window pops up, containing all the

interfaces of the host component (the component whose operation is defined by the diagram). For

each of the shown interfaces, a list of specific methods is shown. In this way, the user can select a

corresponding method of the interface that is connected to the target participant component, and

the signature of the selected method will automatically become the label of that interaction

message. This reduces the amount of code that the user has to write, and also serves as a guide for

the creation of a message.

www.manaraa.com

112

A difficult issue in the implementation of both the state diagram editor and the sequence

diagram editor described above is the xADL-BNA mapping. Specifically, there must be a way to

update a particular part of the diagram (e.g., a component) based on a part of a xADL document.

When that part of the xADL document changes, the corresponding symbol should be

automatically updated to reflect the changes in the xADL document. In other words, all changes

made to the xADL model should cause the corresponding update in the diagram. Generally

speaking, this is a problem of maintaining the model-view synchronization that pervades in the

development of all graphical editors.

In Archipelago, a BNA-based editor, the synchronization of the xADL and the BNA

model is automatically monitored and handled by a class implemented in the BNA framework,

AbstractAutomapSingleAssemblyXArchRelativePathMappingLogic. To support new modeling

capabilities such as the editors of sequence diagrams and state diagrams, all one need do is just

create specific logics that extend the above class with some customization code. Examples of

these new logics that were created in our implementation include MapXadlTransitionLogic,

MapXadlStateLogic, and MapXadlParticipantLogic. This special design keeps things simple and

efficient, and represents another benefits of Archipelago and its BNA framework.

Note that the implementation of both the state diagram editor and the sequence diagram

editor is not part of the architecture-implementation mapping work. We developed them simply

because there were no corresponding editors in Archipelago when we started this research work.

The introduction presented in this section highlights some special features of the developed

editors. These editors provide us an application context, based on which we can further develop

our architecture-implementation mapping tool – xMapper.

www.manaraa.com

113

5.2.2 Recording	
 Architecture	
 Changes	

The recording of architecture changes is integrated into Archipelago, which provides a

graphical architecture-editing interface. It supports the action of adding/removing architectural

components, interfaces, and links. In order to record changes made to an architecture, the xADL

schema must be extended to specify changes in the architecture description. Based on that,

specific recording logics are built in Archipelago. Figure 5-4 shows the recorded changes after a

series of modifications to an architecture. What is also shown in the figure is a screenshot of the

Archipelago structural modeling environment and how a map-to-code process is started.

As can be seen, a new element <archChange> is added to the root (<xArch>) of the

architecture description, which used to contain the <archStructure> element only for architecture

structure information. Under the new element, there are multiple <changes> elements (annotated

with their starting time in the figure), each of which represents a change session that includes a

series of specific changes. The status of each change session is either “mapped” or “unmapped”,

depending on whether the map-to-code process is done on the session or not. A new “unmapped”

session will be created automatically if the architecture is modified, and no “unmapped” change

session exists. This represents an implicit change session management.

In contrast, an alternative way is to allow the architect to create a new change session

explicitly, even if there is already an “unmapped” change session. By this means, parallel change

sessions are enabled. They could be changes that modify different portions of the architecture,

for different purposes, and be mapped to the code independently. Users are allowed to switch

among different change sessions (e.g. for different tasks), so that the changes they made to the

architecture are recorded into the corresponding change session. Another possible application is

to visualize the changes of each change session. For example, select a change session on the left

www.manaraa.com

114

panel of Archipelago, and changes in that session will be highlighted in the architecture in the

right panel of Archipelago. We believe there are some specific issues to be addressed, such as the

relationships (e.g. mutual exclusion, dependency) between concurrent change sessions. What

should be noted here is that it is actually the architecture-based code regeneration mechanism

presented above that makes parallel change sessions a possibility.

Figure 5-4: Architecture change recording in the Archipelago modeling environment.

A tricky issue in architecture change recording is how to deal with removal of

architecture elements. Recording the removal action itself is not a challenge, but the problem is

that we often need the information (name, attributes, …) of the removed element during the map-

to-code process, such as generation of change notifications. With the current design of

Archipelago, the element will be removed permanently from the architecture once that removal

action is triggered and saved.

www.manaraa.com

115

A possible solution is to change the logic of Archipelago: mark the element as something

like “toBeRemoved”, and remove it after the changes are successfully mapped to the code. This

solves the problem, but it requires unwanted modifications to Archipelago’s existing logic. Our

solution is to create a complete copy of the removed element in the architecture change model,

so that Archipelago can remove the original element as before. The copy is used for information

retrieval during code mapping, and is removed after the process is successfully done. Again, this

special design reflects another advantage of explicit modeling of architecture changes.

With respect to the logics of recording architecture changes, the Archipelago architecture

editor works in two modes: recording and normal. When the editor is entered or re-entered (e.g.

by double-clicking a node in the left panel of Archipelago), the system will check if there is any

“unmapped” change session in the xADL document. If an “unmapped” session exists, the editor

will load the change session ID into an environment variable (e.g. sessionID) and automatically

enter the recording mode – all the changes made afterwards will be recorded into the loaded

change session and the “Map Changes To Code” menu item shown in Figure 5-4 is enabled.

Otherwise the editor is in the normal mode: the sessionID variable will be set to null and the

map-to-code menu item is disabled.

Once the editor is entered, there are two kinds of actions that can trigger the mode

transition: making changes to the architecture and starting the map-to-code process. The former

makes the editor enter the recording state. Note that this may include the creation of a new

change session and the action of setting the sessionID variable if the editor is originally in the

normal mode. In contrast, the latter simply changes the mode from recording to normal and

clears the sessionID variable.

www.manaraa.com

116

5.2.3 Change	
 Analysis	
 and	
 Refinement	

The architecture change model only records “raw” changes. In other words, it simply

reflects what has been done to the architecture, and is relatively independent of how the changes

are mapped to the code. In particular, some recorded changes may not be of interest to the map-

to-code process at all. For example, consider the following scenario. The architect created a new

component, worked on it a little bit, but somehow found this component not necessary and

removed it. All these actions are recorded into the change model. However, as far as their impact

on the code is concerned, nothing should be done during code mapping, assuming no other

components made a reference to this component. This example highlights another important step

in the implementation of 1.x-way mapping: analysis and refinement of recorded architecture

changes.

As mentioned earlier in this section, the map-to-code process is performed per change

session. Each item (e.g. addComponent) in the change session that is being processed will go

through a specially designed filtering logic. The result of running this filtering logic on a change

session are so-called “refined” changes that consist of a set of discrete change sets:

addedComponent (components that were added in this change session), updatedComponent

(components that were updated in this change session), and removedComponent. In particular,

the intersection of these change sets is guaranteed to be null. This ensures that each changed

architecture element be mapped to code in an unambiguous way.

List 5-1 shows the filtering logic of change analysis and refinement in 1.x-way mapping.

It codifies a set of rules that define under what condition a specific change item should be

discarded or merged with a previous change item. For example, one filtering rule specifies that

whenever a removeX (e.g. removeComponent) change item comes in, the set of addedX should

www.manaraa.com

117

be checked first. If the entity to be removed exists, the corresponding entry in the addedX set

should be removed and the removeX change item is discarded. Otherwise the set of updatedX is

checked. Again if the entity to be removed exists, the corresponding entry in the updatedX set

should be removed and the removeX change item is added to the removedX set. Finally, if neither

of the above is true, add the entity associated with removeX to the removedX set. In this way, the

scenario discussed above can be successfully addressed, all the changes will be discarded in the

end, and the code remains.

// X below represents a changed architecture element
for each addX change
 add X to AddedElements

for each removeX change
 if (X is in AddedElements)
 remove X from AddedElements
 else if (X is in UpdatedElements)
 remove X from UpdatedElements
 add X to removedElements
 else
 add X to removedElements

for each updateX change
 if (X is in AddedElements)
 discard updateX
 else
 add X to updatedElements

List 5-1: The filtering logic of change analysis.

The filtering logic illustrated above is based on the assumption that all the changes in an

architecture change session are recorded and processed in the order of occurrence. In other

words, an addX change item should always be recorded and processed before either updateX or

removeX of the same architecture element. This is guaranteed by the implementation of our

architecture recording and map-to-code process. It also explains a portion of the above filtering

logic. For example, an addX item can be simply processed by adding X into the addedX set

without checking either updatedX or removedX since there is no way that X could be updated or

removed before it is added under the current design.

www.manaraa.com

118

Finally, note that the filtering logic presented above represents a basic exploration

towards this direction. It can be extended or customized with more advanced logics to satisfy

some special needs. For example, a new filtering logic may be created to specify that only

changes to a specific architecture element is considered and all other changes should be

discarded. Or only the changes made by a specific person are processed and mapped to code. All

these advanced logics can be developed based on our architecture change model, and this

highlights a possible extension of 1.x-way mapping. For now, the filtering logic in List 5-1 is

sufficient for us to explore change management and support for behavioral mapping, which is the

focus of this study.

5.2.4 Code	
 Generation	

1.x-way mapping updates architecture-prescribed code through code regeneration. In

particular, code that is regenerated is proportional to the architecture elements that are changed.

For link changes mentioned above, 1.x-way mapping regenerates code that is responsible for

bootstrapping the program with the connection information. For component changes, in contrast,

only the code of the corresponding component is regenerated. The code generator of xMapper is

built upon on the JET2 (Java Emitter Templates) technology of the Eclipse Modeling Project. As

mentioned earlier, JET2 operates in the context of Eclipse, and itself is an Eclipse plug-in. JET2

supports loading XML documents, and navigating them using XPath expressions. This facilitates

the implementation of 1.x-way mapping since the xADL architecture description is XML. JET2

also provides standard JET tag libraries that make it possible to create relatively readable

templates.

Figure 5-5 shows an overview of the code generation process. In general, a JET code

generator only requires three inputs: a complied JET Template, XML input (the xADL

www.manaraa.com

119

architecture specification in our case), and Configuration Variables. An additional input, Refined

Architecture Changes, is used here to enable architecture-based code regeneration, which

ensures that it only regenerates code for modified components. Architecture Model and

Configuration Variables provide required parameters for code generation.

Figure 5-5: Code generation in 1.x-way mapping.

In particular, a configuration panel of code generation is developed as shown in Figure 5-

6. It collects Configuration Variables as shown in Figure 5-5 and provides an opportunity for the

user to tune the code generation process by changing specific parameters, such as the name of

generated classes. The panel is preloaded with values retrieved from the architecture description.

After code generation is done, user entered values will be written back to the architecture to

update corresponding parameters. In this way, a simple record-and-replay is enabled, as is the

creation of traceability links between the architecture and generated code. The panel also allows

the user to manually edit generated change notifications, and this is discussed in next section.

Translated JET
Template Class

Architecture
Structure Model

(XML)

Architecture
Change Model

Refined
Architecture

Changes

JET Template

AnalyzedCompiled

Configuration
Variables

Code Generator
(JET Engine)

Architecture-
Prescribed

Code

UpdatePreload

User Input

www.manaraa.com

120

Note that more parameters can be changed through the configuration panel as long as there is a

way to load and write corresponding information from and to the architecture. Shown here is an

illustration of how this can be done. It is by no means to be complete. Generally, the more

parameters that can be changed, the more flexible the code generation process is, and the more

variations can be addressed during code generation.

Figure 5-6: A configuration panel that tunes the mapping process.

www.manaraa.com

121

The JET Template in Figure 5-5 codifies specific code generation rules. It defines how a

generated variable or class should be named and manipulated by default. Significantly, it

enforces the deep separation mechanism in the generated code as described earlier in Chapter 4.

Different strategies are taken to generate code for architecture elements that are structural only

versus those that are linked to a behavioral diagram, as discussed in Section 4.5.2. Linking

structural and behavioral architecture definitions is not a challenge in general based on the XML

technology. It is somewhat difficult, however, to associate an operation in a Java interface file

with a sequence diagram so that code can be generated from the corresponding sequence diagram

for this operation. Our solution is to add a Javadoc @see tag to an operation in the Java file when

a sequence diagram is defined for it, as exemplified in List 5-2 below. The tag serves as a link to

the corresponding diagram by which the code generator loads information and generates code.

01: /**
02: * @see interactionffea0a1b-0c463028
03: */
04: public void execute(String opcode);

List 5-2: Annotating the method defined by a sequence diagram.

Specifically, a number of JET templates were developed in our implementation,

including main.jet, comparch.jet, icomp.jet, compimp.jet, comparch_sc.jet, abstract_st.jet, and

concrete_st.jet. The last three templates were specifically for state diagram based code

generation. Each of these templates is briefly introduced below:

• main.jet. This is the entry point when the code generation begins. The template

specifies some general information, such as where to dump the generated code and

which template to use for a specific architecture element.

www.manaraa.com

122

• comparch.jet. This is the template with which to generate the architecture-prescribed

(mostly structural) code of a component. For components that contain the operation

defined by a sequence diagram, the operation is generated as described in Chapter 4.

• icomp.jet. This template generates the interface between the architecture-prescribed

and user-defined code of a component. Basically, it contains a list of specific

operations that architecture-prescribed code expects user-defined code to provide.

• compimp.jet. This is the template for user-defined code. Note that the generated code

is just to provide a starting point for the programmer to work with, and may be

manually changed by the programmer.

• comparch_sc.jet, abstract_st.jet, and concrete_sc.jet. These templates control the

generation of architecture-prescribe code for state diagrams. Recall what is shown in

Figure 4-11, comparch_sc.jet is the template for the architecture-prescribed code that

provides a container; abstract_st.jet is the template for abstract state; concrete_sc.jet

is the template for concrete state. For the user-defined code of state diagrams, it

simply reuses the compimp.jet template described above.

5.2.5 Sending	
 Change	
 Notifications	

The architecture change notification of 1.x-way mapping is built upon the Eclipse

Markers technology [23], which is used in Eclipse to annotate specific locations within a

resource. For example, the Eclipse Java compiler not only produces class files from source files,

but also annotates the source files by adding markers to indicate compilation errors. Eclipse

markers provide a mechanism that automates the delivery and display of notifications in user-

defined code. 1.x-way mapping generates notifications based on refined changes and architecture

information. In particular, the architect is able to review and edit generated notifications through

www.manaraa.com

123

the configuration panel mentioned above. This is to support scenarios where additional

information, such as the rationale of a specific change, need to be provided to programmers

[130].

Figure 5-7 shows an example of generated notifications and how they are displayed.

Clicking any of these messages will lead the user to the corresponding source code. All the

messages are automatically generated except the one highlighted, which was manually edited by

the architect in the configuration panel shown in Figure 5-6. In addition, note that information

(e.g. the name of removed interface) of the message “Interface out was removed …” is actually

from the copy created in the architecture change model, as discussed previously in this section.

Figure 5-7: An example of architecture change notifications.

There are two choices regarding the persistence of these notifications. We can make them

either shown-and-disappear or persistent, depending on how important the corresponding

notification is. Notifications of the former type will be gone automatically once the programmer

read them, while notifications of the latter type must be manually removed by the programmer.

Thanks to the Eclipse Markers technology, this customization can be easily done with

corresponding parameters specified. Another possible way of extending the notification

mechanism is to assign a priority level to each specific architecture change notification. For

example, we can assign high priority level to those notifications that the architect wants the

programmer to react to instantly, such as the implementation of a required component interface.

In this way, a better communication between the architecture and the programmer is enabled.

www.manaraa.com

124

5.3 Tool Usage

The developed xMapper tool helps maintain architecture-implementation conformance in

architecture-centric software development, where software architecture plays a central role and

drives development activities like software synthesis, evolution, and integration. Architecture-

centric development requires that all architecture-related changes should start from the

architecture, and be mapped to code afterwards. Traditionally, however, this only works under

the assumption that programmers are highly disciplined since an automated tool that could

enforce and facilitate this development process has not been fully available yet. Below we

present a scenario to illustrate how xMapper can be used by both architect and programmer in

the context of architecture-centric software development to overcome this previous shortcoming.

Architect. Mike works for a software project as an architect. He develops an architecture

model in ArchStudio using the xADL language. After Mike finishes his work, he right clicks the

mouse and selects “Map Architecture To Code” in the pop up menu. At that point, the code

generation engine of xMapper is invoked and starts to generate architecture-prescribed code for

every component. Meanwhile, a Java interface file is also generated for each component. It

consists of the low-level operations (or primitive operations as mentioned earlier) that the

architecture-prescribed code of a component expects its user-defined code to provide. The

generated interface file is then passed to a corresponding programmer to implement.

Mike puts the generated architecture-prescribed code under the protection of a

configuration management system (e.g. Subversion), so that the code can only be updated by him

through the next round of code generation. After a while, Mike decides to make some changes to

the architecture, either to address a requirement change or for optimization. Once he starts to do

that in the ArchStudio modeling environment, a new “unmapped” change session is

www.manaraa.com

125

automatically created in the architecture change model and all the following changes are

recorded and classified in it. Without having to worry about implementation details, Mike makes

all the architecture changes and simply selects “Map Changes to Code” to get the corresponding

code updated. Alternatively, he can also select “Map Changes To Code With Dialog” if he wants

to change some default code generation parameters or review and edit generated notifications. As

a result, the architecture-prescribed code of changed components is regenerated, necessary

notifications are sent to the programmer(s) of the user-defined code, and the change session is

closed with its status updated to “mapped”.

Mike may also want to capture some system dynamics or executions of significance in

his architecture. It is important in architecture-centric development that behavioral architecture

and its changes can be accurately mapped to code. With xMapper, both can be done in an

automatic manner as presented above. All Mike needs to do is model system behaviors in the

supported forms, UML-like sequence diagrams and state diagrams, and make sure that the

developed models are consistent with each other.

Programmer. Jack is a programmer that uses xMapper to collaborate with Mike in the

project. He is responsible for the internal implementation of one or more components, and is

supposed to implement low-level operations required by the corresponding architecture-

prescribed code. During this process, Jack is provided with a reference to the architecture-

prescribed code in the form of method parameters. Through this reference, Jack has access to

services provided by other components that are connected to the component Jack is working on.

With xMapper being used, Jack does not have to worry about whether his work contaminates the

architecture-prescribed code or not. Jack’s code is also sustainable to architecture changes and

code regenerations that follow since many of these changes (e.g. link changes) only require

www.manaraa.com

126

regenerating architecture-prescribed code. Jack gets notifications for the architecture changes

that may require modifications to his code (e.g. component changes). In particular, he only gets

notifications for changes that are made to his component. In this way, Jack will not be

overwhelmed by unrelated notifications.

5.4 Lessons Learned

Implementing 1.x-way mapping in Eclipse and ArchStudio provides some first-hand

understandings about the power and limitations of these two systems. Overall, both of them

facilitated our implementation work by offering some out-of-the-box features (e.g. Eclipse

Markers used in our implementation of change notifications), a clean extension interface (e.g.

Eclipse’s plug-ins), or a powerful framework based on which we could build our own tool (e.g.

ArchStudio’s BNA framework). Some problems, however, were also discovered during this

process. In this section, we discuss the lessons learned from our implementation work about

these two systems. Doing so is part of our reflection upon the implementation, and also serves as

a guide for future development on top of these systems.

5.4.1 About	
 Eclipse	

As mentioned in Section 5.1.1, Eclipse has two features that play an important role in our

implementation, its plug-in mechanism and the Eclipse JET code generation engine. Our

experience with the former includes the application of existing plug-ins and development of our

own Eclipse plug-ins. Our experience with JET is more comprehensive in the sense that we not

only built a code generator on top of the JET engine, but also made extensions to it (e.g. created

our own JET tag). The following are some reflections on this experience.

www.manaraa.com

127

Eclipse is not a single monolithic program, but rather a small kernel containing a plug-in

loader surrounded by hundreds of plug-ins. This modular design lends ArchStudio itself to

discrete chucks of functionality that can be more readily reused to build applications not

envisioned by Eclipse’s original developers. In our implementation, we were able to reuse a

number of Eclipse plug-ins, which saved much effort. Some of these plug-ins were visible to us

and were explicitly used during our implementation, such as Eclipse Markers and Eclipse JET

code generation engine, while some other plug-ins were built-in and were used without being

noticed, such as SWT, JFace, and so on. In addition to reusing existing plug-ins, we also

developed two of our own, a code generator based on JET and a plug-in that extends the JET tag

library. This also turned out to be an easy process with the help of the Eclipse wizard. In

particular, Eclipse’s workbench can be run in different modes: development and runtime. This

makes it possible to test and debug plug-ins without having to stop the current Eclipse

workbench.

Our main concern with Eclipse plug-in infrastructure is that all Eclipse plug-ins have to

be run in the context of Eclipse, which may sound obvious and reasonable. However, there are

some functions that users may want to run independently as a standalone application, for

example, to run a JET-based code generator independently. At this point, it would be nicer if

Eclipse could expose an interface, from which their plug-ins could be called programmatically.

In that way, Eclipse plug-ins would be able to run both inside and outside the Eclipse platform.

From another perspective, what this implies is that making your application an Eclipse plug-in if

and only if it is dependent on or is contributing to Eclipse development platform.

Our experience with the Eclipse JET code generation engine was exactly as what we

expected from an open-source project: powerful but poorly documented. The version we used

www.manaraa.com

128

was JET2, a template-based code generation engine having many nice features compared with

the old version of JET, such as accessing XML documents with Xpath expression, a tag library,

and the capability of reading .java files. At some point, we were even able to create our own JET

tag to extend its functionalities. In our implementation, this happened when we wanted to load a

Java file with a fully qualified name that was located in a different project from the project where

the code generator was run. By default, JET2 can only load Java files in the same project.

However, users can easily add new functionalities by creating their own tags, just as we did. This

is an important feature of JET2.

The problem with JET2 primarily comes from its documentation. All the information we

could get about JET2 is from its website, which maintains a JET Wiki and several user

experience articles [44]. Some of them are already out of date. There is currently no detailed user

manual or guide about how to use JET2. There is also a JET forum where JET users can post

questions, and the JET project owner was generally responsible for answering those questions.

The problem is, the same question was often found asked several times given that a complete

document about JET is still missing. We believe this is a problem that JET must resolve to obtain

more users, especially given its comprehensive code generation capabilities.

5.4.2 About	
 ArchStudio	

Extensibility is an important feature of ArchStudio, and this was directly reflected in our

implementation of 1.x-way mapping. First of all, the extensions of xADL schema to model state

diagrams, sequence diagrams, and architecture changes were relatively straightforward with the

provided tools (e.g. Apigen). Not only a data binding library was automatically generated for

new schemas, which offers programmatic interfaces for manipulating architecture descriptions,

but also the integrated ArchEdit tool can be used to graphically browse the architecture

www.manaraa.com

129

description that supports the new schemas in a tree format. Even the existing xADL schema was

also created with the extension under consideration. For example, in the xArch Java

Implementation XML Schema, there are two elements defined to link a component to its

corresponding source code, mainClass and auxClass. During our implementation of 1.x-way

mapping, we could simply use the former to represent our architecture-prescribed code and use

the latter to represent the user-defined code without any additional changes made.

Modularity is another favorable feature of ArchStudio. What this meant in our

implementation was that all the new xADL schemas we defined were saved independently and

were clearly separated from the existing xADL schemas. They do not interfere with existing

schema, and can be easily added or modified. Moreover, the implementation of ArchStudio itself

is also well organized. The source code is saved into different packages that correspond to

different architecture components, which are loosely coupled. This to a great extent facilitated

our implementation. For the majority of our implementation, we could just create new

components and work independently of other parts of ArchStudio. The only part of the work

where we had to look at the existing code was recording architecture changes, which was

integrated into the logics of Archipelago. Even so, the process was still relatively easy, given that

most modification logics (e.g. add component, remove link, etc.) were centrally specified in

several files that could be easily located from their class names.

xADL 2.0 is accompanied by a number of tools that provide basic capabilities to xADL

users: parsing, editing, serializing, low-level editing, and so on. In particular, the data binding

library of xADL and its xArchADT wrapper offer a high-level interface (e.g. addComponent,

addInterface) to edit xADL documents, shielding users from underlying XML details (e.g. tags,

attributes, etc.). This is recognized as an important benefit of xADL and ArchStudio. However, it

www.manaraa.com

130

would be better if an interface that accepts the XPath expression (the XML Path Language, a

query language for selecting nodes from an XML document) [152] could be provided. In that

way, it would be more efficient for users to parse the xADL document and directly fetch the

element of their interest. At this point, all the read/write operations on the xADL document can

only go through the data binding library.

Finally, ArchStudio is still a research-oriented tool. It is not fair to compare it with some

commercial tools, such as IBM Rational Software Architect, even though we believe ArchStudio

in many aspects outperforms these existing products. In particular, the extensibility and

modularity of ArchStudio make it an ideal platform to perform architecture related research.

Based on our experience, some further improvements can be made to get ArchStudio even better,

such as usability and documentation. Some initial work has already been done in this regard

[139]. The 1.x-way mapping tool integrated with ArchStudio also partially addresses the

usability issue. For example, users do not have to manually write some framework specific code,

which is often found tedious and error prone. As to the documentation, it is fine in terms of how

to use ArchStudio. In contrast, the document about how to contribute to ArchStudio as a

developer is still limited. For example, there is no specific document talking about how to use the

BNA4 framework to build additional graphical elements in Archipelago.

www.manaraa.com

131

6 Experiments and Validations

This chapter is dedicated to the validation of the 1.x-way mapping approach. It starts

from a description of the overall objectives of the validation, and then specifically introduces

three case studies that address different aspects of the approach. For each of these case studies,

its corresponding introduction in this chapter covers the applied evaluation method, collected

results, threats to validity, and conclusions that can be made about 1.x-way mapping based on the

case study. At the end of the chapter, justification is also made about why the results collected in

our validation can be generalized to other real software systems.

6.1 Objectives

The overall purpose of the validation is to validate the hypothesis presented in Chapter 1-

1.x-way mapping can be applied in the development of a realistic system to prevent its

architecture-prescribed code from being manually changed by programmers, and support

automatic mapping of structural and behavioral architecture changes to code. The emphases of

the hypothesis are (1) the approach can be applied to a realistic software system; (2) automatic

mapping of architecture changes to code and protection of architecture-prescribed code are valid

features; (3) the features listed in (2) are applicable to behavioral architecture specifications.

Correspondingly, our validation is specifically focused on these three points. We want to ensure

that the 1.x-way mapping approach is practical in real software development, and its features

really work as presented earlier in the dissertation.

First of all, we validate if deep separation as the basic requirement of 1.x-way mapping is

applicable to the implementation of a real program of significant complexity. Deep separation is

the only cost that 1.x-way mapping users have to pay for its support for architecture-

www.manaraa.com

132

implementation conformance discussed above. It directly decides the applicability or feasibility

of 1.x-way mapping, especially considering that programming patterns and frameworks are

widely adopted in current software development. Thus, it is important to validate that deep

separation does not compromise or conflict with existing implementation technologies.

Next, we focus on the claimed features of 1.x-way mapping when it is used to manage

changes of significant size that are made to the above program. In particular, we want to evaluate

how frequently an architecture change can be mapped to code automatically, semi-automatically,

or even manually, and how often - if ever - an accidental change of architecture-prescribed code

may happen given that it is supposed to be avoided with 1.x-way mapping. Note that the manual

changes to user-defined code for logic completion should not be considered as a violation of the

hypothesis. Instead, we still consider 1.x-way mapping as being able to support automatic change

mapping as long as it can automatically update corresponding architecture-prescribed code and

send relevant change notifications to user-defined code when necessary.

Finally, we evaluate how the involvement of behavioral mapping affects the statistics

collected in the second step. 1.x-way mapping will be considered to be able to support behavioral

mapping if all the behavioral architecture changes can be mapped to code automatically or semi-

automatically depending on specific change types. If manual changes are involved, they should

be specifically studied and analyzed to see if they are caused by the design of the 1.x-way

mapping approach.

An ideal way to validate all three dimensions mentioned above would be doing a long-

term study of how the 1.x-way mapping tool can be used to manage development changes in a

real software project. Such a study is currently pending. Instead, we applied the 1.x-way

mapping approach to the evolutions of a pre-existing software application, ArchStudio 4, where

www.manaraa.com

133

our approach was implemented and integrated. We refactored the code of ArchStudio with the

deep separation mechanism first. The purpose was to (1) validate the applicability of deep

separation in a real system and (2) prepare for the subsequent replaying evaluations and enable

us to start an experimental development. After that, we replayed the changes made to ArchStudio

in two research projects with the help of our 1.x-way mapping approach. That is, we replayed

history, but using the 1.x-way mapping version of the system from the refactoring evaluation.

The first project we replayed was Architecture-Centric Traceability for Stakeholders (ACTS)

[66]. In this project, structural changes had been made to both the architecture and the code of

ArchStudio to build and integrate a tool that automatically captures traceability links between

architecture and other development artifacts. Replaying its development history offers an

opportunity to fully exercise 1.x-way mapping’s capability of managing structural architecture

and code changes mentioned above. The second project was the development of xMapper – the

tool that implements 1.x-way mapping in ArchStudio. This project was special in the sense that

behavioral architecture diagrams and changes had been involved, based on which the behavioral

mapping feature can be validated for 1.x-way mapping.

6.2 Evaluation I: Deep Separation of ArchStudio 4

ArchStudio 4 is an Eclipse-based architecture development environment that has been

developed and maintained by our research group for many years. Its architecture and code are

both open for public access. The code of ArchStudio 4 is accompanied by an explicit architecture

model that consists of forty components, corresponding to more than 85KSLOC. A primary

benefit of exercising 1.x-way mapping with ArchStudio 4 is that it has been extended in several

research projects [8, 68, 139], where significant changes were made to its architecture and code.

ArchStudio 4 represents an open source system whose development and evolutions were

www.manaraa.com

134

committed independently (e.g. by different people and for different purposes). In particular, the

changes made were for a specific task, and happened before 1.x-way mapping was developed.

This provides a chance to re-do the changes based on our 1.x-way mapping approach without

inducing biases.

Before 1.x-way mapping was applied, the ArchStudio code had to be refactored [93]

based on the deep separation mechanism. This is also to answer the first question raised in

Section 6.1 about whether deep separation of 1.x-way mapping is applicable to the

implementation of a real program of significant complexity. At this point, we believe ArchStudio

4 is qualified because (1) ArchStudio 4 is a software system that is being used at UC Irvine, in

several companies and universities. (2) ArchStudio 4 is a relatively complex system that

integrates a number of sophisticated tools and can be extended with more. (3) ArchStudio 4 is

built on the myx.fw architecture framework introduced in Section 2.2.2 and involves extensive

use of programming patterns and code libraries, both of which are the norm rather than the

exception in current software development. Thus, we can safely draw the conclusion that deep

separation is practical with real software systems if we can successfully apply it to the code of

ArchStudio 4. Threats to validity exist as well, and they are also specifically discussed later in

this section.

6.2.1 Evaluation	
 Method	

Figure 6-1 is ArchStudio 4’s (build 4.0.5) architecture model as shown in the

Archipelago editor. Due to the size of the diagram, the elements are too small to be clearly seen.

The point of including this diagram here is to highlight the layered aspect of the architecture and

provide an overview of how ArchStudio’s components are organized. In the evaluation, we

refactored the ArchStudio code in the bottom-up order. In this way, the impact of the refactoring

www.manaraa.com

135

process on the whole system was kept minimal given that each component in the ArchStudio

architecture depends on its adjacent upper layer [33].

Figure 6-1: ArchStudio 4's architecture.

A tool that can support the process of code refactoring based on deep separation is not yet

available. To enable the evaluation, we generated the initial architecture-prescribed code for each

component first (to a temporary file), used the generated code as a reference to identify

corresponding code in the existing code, and finally decoupled them from implementation details

using the deep separation mechanism described in Section 4.3. By decoupled, it usually means

the process of creating new classes or interfaces, copying and pasting, and changing certain code

(e.g. variable names) of existing classes. In some cases, we also needed to update the templates

of our code generator to satisfy some special needs as described below.

www.manaraa.com

136

When problems occurred, for example, the code of some components could not be

separated exactly as what is specified by the deep separation due to the application of some

technologies, we first tried to modify code generation templates or the configuration panel

mentioned in Section 4.4. This was done under the precondition that the changes made do not

break the basic principles of deep separation – the architecture-prescribed code and user-defined

code of a component are separated into independent elements (classes in this case), and

programmer’s changes are limited to user-defined code. If the problem remained, we then tried

to change the way these components were implemented so that the deep separation mechanism

can be finally applied. Again, it must be guaranteed that the same functionality of the component

is maintained. At this point, we tried to keep the changes minimal. If neither of the above was

applicable, we wrote down the specific problems and did some post hoc analysis to see if these

problems were inherent to the design of deep separation, or simply due to the limitations of

specific implementation technologies.

We applied deep separation to the implementation of all components in the ArchStudio

architecture shown in Figure 6-1. During this process, some similar problems were found and

similar solutions ended up being applied. We began to realize that the components could be

divided into groups based on how deep separation was applied to them. The code of components

in the same group basically could be refactored in the same way for deep separation, and similar

strategies were usually used to refactor the code. In addition, we found that the way a component

is grouped is closely related with its position in the architecture. Components that are adjacent in

the architecture (e.g. located in the same layer) tend to be classified in the same group (i.e.

refactored in the same way). For example, components in the bottom layer (e.g. the components

www.manaraa.com

137

that contribute GUI elements) of the architecture were coded in a similar way in ArchStudio, and

therefore, their implementations were refactored similarly.

6.2.2 Results	

Table 6-1 shows the results of applying deep separation to the code of ArchStudio 4. As

we introduced earlier, all the ArchStudio components are divided into different groups based on

the strategy taken to refactor their code. Overall, deep separation was successfully applied to the

implementation of all the components, although some of them needed special treatment, such as

modifications to code generation templates, the configuration panel, or the way the components

were implemented. Note that all the changes made were to facilitate the separation process, and

none of them were essential to deep separation. Changing templates and the configuration panel

was primarily to automate the process of updating architecture-prescribed code, whereas

changing the implementation of some components was to make the boundary of its architecture-

prescribed code and user-defined code clearer.

Another thing to note is that there were several places where generated code had to be

manually edited, for example, to catch/process Java exceptions. This is not recommended in 1.x-

way mapping, and can be seen as a compromise we made given current code generation and

modeling technologies. However, this does not affect the validity of the deep separation

mechanism, because what is essential about deep separation is that architecture-prescribed code

and user-defined code are separated and integrated in the specified way, and programmer’s

changes are limited to user-defined code. Automatic update of architecture-prescribed code is a

final goal, even though it may be hard to completely realize at this point.

www.manaraa.com

138

Components Problems Solutions / Comments

1

Pruner, Selector, Version Pruner,

Boolean Evaluator, Boolean Notation,

Graph Layout, Guard Tracker, Editor

Preference Panel, Base Preference

Panel, Editor Manager, Schematron

Preferences, Archipelago Preference

Panel, Archipelago Types Preference

Panel, Graph Layout Preferences,

Archlight Preferences, Launcher, xArch

Change Set Sync

Some variable names (e.g.

the references to connected

components) did not match

those of generated code.

Only some variable names

were changed. These

components are “good

citizens” of deep

separation.

2

Archlight Tool Aggregator, Archlight

Issue ADT, Preference ADT, Archlight

Test ADT, Archlight Notice ADT, File

Tracker, File Manager

1. The existence of multiple

provided interfaces.

2. Arch-prescribed code

had additional interfaces to

implement.

Changed the code

generation templates and

configuration panel.

3 Archlight Issue View, Archlight Notice

View, Schematron, xArch Change Set

Implemented Interface

IMyxDynamicBrick.
Used a different template.

4
Archipelago, ArchEdit, Archlight,

AIMLauncher, Type Wrangler, xArch

Change Set View, Selector Driver

1. A special pattern was

used to implement these

components.

2. Both architecture-

prescribed code and user-

defined code had to extend

some pre-defined classes.

1. Changed the code of the

components to make

architecture-prescribed and

user-defined code clear.

2. Code generator was also

changed to address the

class extension issue.

5 xArch ADT, AIM, Resources, xArch

Change Set ADT

1. Special technology was

applied (e.g. Java dynamic

proxy class).

2. Reuse of code that was

located in different projects.

1. Moved technology-

specific code to user-

defined part.

2. Moved the reused code

to the same project as the

arch-prescribed code.

Table 6-1: Results of Evaluation I.

www.manaraa.com

139

The first group of components shown in the above table can be seen as “good citizens” of

deep separation. They did not require any major changes to either the existing code or code

generation templates, and deep separation could be easily applied to them. All the changes

needed were simply renaming some variables. Close to half of the ArchStudio components fell

into this group. On the one hand, this saved us a lot of time and effort in the refactoring process.

On the other hand, it reflects the fact that deep separation naturally matches the current

implementation of ArchStudio. All these components were developed before 1.x-way mapping,

yet most were developed in the spirit of deep separation. Typical examples of components in this

group are Boolean Evaluator, Pruner, Selector, and Editor Manger. Note that all these

components are located in the middle layers of the architecture. They do not interact directly

with the user as the components in the bottom layers do, and are not involved with File I/O as the

components in the top layers are.

The second group of components could not be refactored as easily as the first group, but

they were still successfully handled after we made some changes to either the code generation

templates or the configuration panel. Representative components in this group include File

Tracker, Archlight Tool Aggregator, and Archlight Issue ADT. They were special primarily

because the code generator we first built was not flexible enough to deal with all possibilities

during code generation, rather than the deep separation mechanism itself being limited. That

said, these components could be potentially moved to the first group with a comprehensive code

generator built. For example, some components in this group had multiple provided interfaces, or

expected their architecture-prescribed code to implement interfaces that are not specified in the

architecture due to the application of certain programming patterns. The former was addressed in

our evaluation by making some changes to the code generation templates, while the latter was

www.manaraa.com

140

addressed by allowing users to specify additional interfaces in the configuration panel. Either

way, the deep separation mechanism was still successfully applied to these components.

Components in the third group include Archlight Issue View, Archlight Notice View,

Schematron. The implementation of these components exploited a special design of the myx.fw

framework to provide support for runtime dynamism. Their code implemented an interface,

IMyxDynamicBrick, which requires the implementation of several callback methods so that the

framework can notify the code of these components when a link is being connected to or

disconnected from their interfaces at runtime. This allows a specific component in the

application to support runtime dynamism where it is needed, without complicating components

that do not need it [33]. As a result, a different code generation template was used for these

components. This also requires our code generator to be highly customizable so that not only

specific code generation parameters (e.g. class names) can be changed, but also the template to

be used can be specified during the code generation process.

The fourth group primarily consists of components that contribute views, editors, and

other GUI elements. Examples include ArchEdit, Archipelago, Archlight, and Type Wrangler.

These components were implemented in ArchStudio in such a way that addressed a conflict

between ArchStudio and Eclipse concerning how the components are instantiated [38]. Simply

speaking, there were two classes that implement each architecture component, xxxEditor and

xxxMyxComponent (xxx is the name of a specific editor). The former extended the

AbstractArchstudioEditor class and was loaded by Eclipse, while the later extended

AbstractArchstudioEditorMyxComponent and was instantiated by ArchStudio. The two base

classes encapsulated a mechanism that facilitated the integration of ArchStudio and Eclipse.

From the perspective of 1.x-way mapping, both xxxMyxComponent and its parent class

www.manaraa.com

141

AbstractArchstudioEditorMyxComponent could be seen as architecture-prescribed code and were

thus processed. The code generator must be highly customizable in this case, so that necessary

parameters could be set during the code generation process, including the name of the editor. As

to xxxEditor, it was seen as user-defined code that extended AbstractArchstudioEditor. What was

special at this point was how the architecture-prescribed code and user-defined code were

integrated. Instead of using the method call mechanism described in Section 4.3, an existing

class called MyxRegistry was used for integration. It provided the methods of register, map, and

waitForBrick that map architecture-prescribed code to its corresponding user-defined code. As a

result, deep separation was finally applied to the components in this group, even though changes

in both code generator and existing code had to be made during this process.

Finally, the fifth group contains several components that can be seen as special cases,

including Resource, AIM, and xArch ADT. Resource, for example, used the technology of Java

dynamic proxy class that needed to be initialized in a specific way. To refactor its code for deep

separation, we moved the technology-specific code to user-defined part, and made initialization

customizable during code generation. AIM and xArch ADT both used existing code as their user-

defined code to implement provided operations. In particular, the reused class was located in a

separate project. Our first attempt on separating the code gave us a “circle detected in build path”

error. After examining the problem, we realized that this was caused by the two plug-in projects,

where architecture-prescribed code and user-defined code were located, had to maintain a mutual

reference due to the design of deep separation. Our solution was simply moving the reused code

to the same project as the architecture-prescribed code. This is further discussed in Section 6.2.4.

www.manaraa.com

142

6.2.3 Threats	
 to	
 Validity	

The threats to validity of our success in applying deep separation include three primary

factors. First of all, ArchStudio 4 represents an open-source academic project, where the

technologies used are limited to some standard ones, mostly Eclipse technologies. It remains to

be seen how deep separation can be used to refactor the code of a proprietary industrial

application. The challenges that these systems may bring include the extensive use of

accumulated domain-specific code or framework, domain-specific software architecture, or some

proprietary development technologies. This is particularly true for those domains that are highly

mature and require sophisticated domain-specific knowledge, such as financial planning, traffic

scheduling, and so on. A significant amount of legacy code may exist in the software systems of

these application areas, and this imposes a challenge to the deep separation mechanism.

Another factor that may endanger the validity of this evaluation is related to the

application of myx.fw framework in the implementation of ArchStudio 4. One the one hand, the

framework provides us an opportunity to fully exercise deep separation with program patterns of

the framework, ensuring that they are compatible to each other. On the other hand, the

framework to some extent contracts the implementation space given that reusable constructs

usually encapsulate certain implementation decisions from its users. In other words, there are

less variations of how a component may be implemented with an architecture framework than

without a framework. What this means to our deep separation is that a higher requirement on the

customizability of the code generator may be imposed. An extreme case could be that some

components may not have user-defined code at all, or its architecture-prescribed code contains

nothing but a reference to user-defined code.

www.manaraa.com

143

Finally, my pre-existing knowledge about ArchStudio may be another factor that affects

the validity of this evaluation. Before working on 1.x-way mapping, I had the experience of

developing a Myx-style lunar lander video game in ArchStudio. Although my role in that project

was primarily as an ArchStudio user, instead of an ArchStudio developer or contributor, I still

obtained some understandings about ArchStudio, such as how ArchStudio was started and so on.

In addition, I also made some modifications to the code of ArchStudio (mostly the AIM

Launcher tool) to make it support hierarchical architectures. All these may play a role in the

success of applying deep separation to the code.

6.2.4 Conclusion	

First, it is generally possible to apply deep separation to the code of a real program. We

were able to enforce deep separation to the code of most of ArchStudio components. In

particular, we found deep separation comports with the use of programming framework and code

library, both of which are the norm rather than the exception in today’s software development

and extensively exist in the implementation of ArchStudio. The ArchStudio code is built upon

the myx.fw framework that provides abstract base classes for components and connectors. It also

restricts the way that certain architecture variables be initialized, and provides lifecycle methods

for each component to override. Manually writing the framework-specific code is not only

tedious, but also error prone. In the evaluation, we made a special template that included the

routine code and had them automatically generated as part of the architecture-prescribed code.

Both software productivity and the usability of the programming framework were improved. In

addition, the ArchStudio code is greatly dependent on some application-neutral code libraries.

For example, one such library provides APIs for accessing and manipulating the xADL

document where architecture specifications are saved. Mixing architecture-prescribed code and

www.manaraa.com

144

the library code impedes the evolution of both parts. With deep separation enforced, the use of a

system library can be encapsulated in user-defined code. In some cases, we were even able to

simply use a class from a code library as user-defined code since all required operations were

already provided by the class.

Second, a configurable code generator is necessary to facilitate the application of deep

separation. It provides a chance for the architect to address variations from predefined rules

during code generation, so that the generated architecture-prescribed code does not have to be

manually modified. One such variation happens when architecture-prescribed code of a

component needs to declare the implementation of additional interfaces other than those that are

specified in the architecture. This is particularly the case if the component contributes views,

editors, and other GUI elements. As discussed earlier, a special implementation strategy was

taken in ArchStudio to address an architecture mismatch problem between its myx.fw framework

and Eclipse plug-in mechanism in terms of who controls loading and instantiating the

ArchStudio GUI. Consequently, extensive interface implementation and class extension were

involved. Another case where a configurable code generator is necessary is when user-defined

code of a component needs to be initialized in a special way. In our evaluation, this happened

when the implementation of a component used a special technology, e.g. Java dynamic proxy

class, but the code generator was not sophisticated enough to express it.

Finally, deep separation is not compatible with the mutual reference restriction of Eclipse

plug-ins. There were components in ArchStudio whose implementation was spread over two

Eclipse plug-in projects. To keep the changes minimal, we initially made the architecture-

prescribed code and user-defined code located in the two projects respectively. This gave us a

“circle detected in build path” error. We then found that it was caused by an inherent

www.manaraa.com

145

requirement of deep separation: architecture-prescribed code and user-defined code of each

component must explicitly maintain a mutual reference as illustrated in Section 4.3.1. In the

context of Eclipse plug-ins, what this meant was that the two plug-in projects mentioned above

had to add each other to their dependency list. Unfortunately, it was not allowed by the Eclipse

plug-in mechanism. This is a situation where deep separation cannot be directly applied.

However, we believe its impact is of a limited range considering that (1) this failure is Eclipse

specific; (2) it is in general not a good practice to have the implementation of a component

spread over projects. In particular, the problem can be easily solved by either moving the code

into one project or adding a code agent that acts as user-defined code in the project where the

architecture-prescribed code is located.

6.3 Evaluation II: Replaying Changes of ACTS

Architecture-Centric Traceability for Stakeholders (ACTS) is a project that centered on

the creation, maintenance, and application of traceability links between software architecture and

other artifacts [66]. It tackles issues of catering to multiple stakeholder interests by using custom

rules and mashups, and addresses issues that relate to capturing and maintaining links by

prospective link capture, concepts from open hypermedia, and rules. As an implementation of the

work, a traceability recording and analysis tool was built in ArchStudio and both architecture and

code changes were made to ArchStudio. Eleven components were added to the ArchStudio

architecture, and around 15KSLOC were written. All the involved architecture changes were

structure oriented. The project repository was available for public access at [65].

After the ArchStudio code was refactored for deep separation, we chose to re-do the

changes made to ArchStudio in the ACTS project with the help of the 1.x-way mapping

approach. That is, we recovered and replayed the development history of ACTS on top of the

www.manaraa.com

146

refactored ArchStudio system. The rationale for choosing ACTS is that its development history

was well preserved and extensive architecture changes were involved. An independent branch

had been created in the Subversion system [28] for this project when it first started, all

subsequent development was checked in on a regular basis, and finally the branch was merged

into the ArchStudio trunk after the project reached a stable condition. A typical development

lifecycle was followed in this project.

6.3.1 Evaluation	
 Method	

The process of replaying the development history of a project includes two specific

activities: recovering changes and re-doing them with the 1.x-way mapping tool. Before

replaying started, we ensured that the evaluation environment was set up appropriately. Figure 6-

2 shows the environmental setting of our evaluation, which was based on the Eclipse’s

development and runtime workbench. The development workbench on the left represents the

development environment of the 1.x-way mapping tool. This is a regular Eclipse development

environment with the ArchStudio plug-ins installed. Its workspace contained all the ArchStudio

packages and the code that we wrote for our mapping tool. The runtime workbench was started

through running ArchStudio in the workspace as an Eclipse application. At that point,

ArchStudio (including our 1.x-way mapping tool) was automatically installed as plug-ins in the

Eclipse runtime workbench. In the workspace of the runtime workbench, we manually imported

the ArchStudio packages that were refactored in Evaluation I for deep separation. The evaluation

environment was then ready for replaying changes.

www.manaraa.com

147

Figure 6-2: Replaying environment.

With the help of Eclipse’s Subclipse plug-in [27] and the Trac system [132], we were

able to recover the work done between January 2008 when a branch was created for the project,

and the end of October 2008 when the branch was finally merged to the ArchStudio trunk. A

PhD student and a Masters student worked together on the project, and in total made 112

commits during this period. On average, there was one commit every two to three days. Figure 6-

3 is a screenshot of the project development history shown in Subclipse.

For each of the change entries shown in Figure 6-3, we used the Trac system to check

details about what specifically was changed. A screenshot of such change details is shown in

Figure 6-4. Following this process, all changes checked into the repository could be successfully

recovered. Note that our focus was on the architecture changes. In other words, we closely

followed the updates made to the ArchStudio xADL document. While for the code changes,

many of them were low-level implementation details and were simply ignored. We only cared

about the code changes that were associated with an architecture update. Many such code

changes were architecture related, such as to implement a component that was just added or

update the code of a component that was changed in the architecture.

Eclipse Development Workbench Eclipse Runtime Workbench

Installed Plug-insWorkspace WorkspaceInstalled Plug-ins

Refactored
ArchStudio

+
ACTS

packages

ArchStudio
with 1.x-way
mapping tool

ArchStudio

ArchStudio
+

1.x-way
packages

Run ...

www.manaraa.com

148

Figure 6-3: A screenshot of development history in Subclipse.

Figure 6-4: Change details shown in Trac.

www.manaraa.com

149

After change recovery was done, we manually made all the recovered architecture

changes, mapped them to code with the 1.x-way mapping tool, and manually made necessary

changes in user-defined code. Our overall strategy was starting a new architecture change session

for each repository commit where architecture changes were involved. There were also commits

that were either for small bug fixes or made code changes only. They were simply merged to the

previous “unmapped” change session, which was mapped to code when the next architecture-

related commit arrived.

In the case when more than one component was added to the architecture in a single

commit, we assumed that they were developed in the top-down order and replayed that way. This

was considering that the architecture of ArchStudio was organized into layers, with each

component depending on its adjacent upper layer. Repeating this process finally generated 22

architecture change sessions, which in total consisted of 130 architecture changes. Figure 6-5

shows the recovered architecture milestones that were successively developed during this

process. Note that Component Trace Criteria View in version 7026 at some point in the

development was removed and does not exist in the later versions.

We also made some changes to our code generator to facilitate the replay of some

architecture changes. For example, one change we made was to make our code generator able to

load java interface files that were located in a separate project. This was because the ACTS

project was created in a separate Eclipse project from ArchStudio, even though ACTS itself was

integrated as an ArchStudio tool. Unfortunately, current Eclipse JET tag library does not support

this. Thus, we had to extend JET by creating our own tag to do this. Another change we made

was for the similar purpose: generating code that is in a different project from the project where

code generator is running.

www.manaraa.com

150

Version #: 7026

Version #: 7053

Version #: 7076

Version #: 7457

Version #: 7548

Figure 6-5: Recovered architecture milestones.

www.manaraa.com

151

6.3.2 Results	

As a result of applying 1.x-way mapping, about two thirds of the changes were mapped

to code in a completely automatic manner: only the architecture-prescribed code was updated

while the user-defined code remained. The rest were semi-automatically handled, meaning that

manual modifications were also required in user-defined code and appropriate architecture

change notifications were sent correspondingly. Table 6-2 shows the details of the evaluation

result. It is consistent with what is presented in Figure 4-7.

 Auto Semi-auto Total

Link Changes 49 _ 49

Add Component _ 14 14

Update Component 36 28 64

Remove Component 3 _ 3

Total 88 42 130

Table 6-2: Results of Evaluation II.

The manual work required for semi-automatically handled changes was primarily to

complete application logic. For example, all the Add Component changes in the table had to be

semi-automatically handled because, naturally, programmers need to work on implementation

details of those new components. Note that only 28 of 64 Update Component changes actually

required users’ manual work. This was because of the change analysis and refining process

discussed in Chapter 5, where some changes were either discarded or addressed in the mapping

of other changes. They were considered as being automatically handled since no manual work

was actually required. For example, all the changes (e.g. add interface, edit description, etc.) that

www.manaraa.com

152

were made to a newly added component were simply merged to the “Add Component” change

that was previously recorded into the architecture change model. When mapping to code, no

specific actions were taken for these afterwards changes and only the “Add Component” change

was explicitly handled. This was based on our change filtering logic discussed in Section 5.2.3.

Similarly, all the update changes made to a component that was later removed (e.g. Trace

Criteria View) were also discarded and were seen as automatically handled.

Compared with architecture changes, code changes were tricky to evaluate, because the

ACTS tool as an extension of ArchStudio was also built upon the myx.fw framework. The

framework reduced the circumstances where architecture-prescribed code could be accidently

changed, given that it hard coded and encapsulated a portion of architecture implementation,

including message exchange among components, architecture topology, and so on. Additional

coding constraints were also induced due to the use of the framework, as mentioned earlier. In

the evaluation, we decided to consider both direct changes of architecture-prescribed code and

violations of the Myx coding constraints as errors that should be avoided. In this way, the effect

of the framework was addressed. Sixteen such errors ended up being found in the

implementation of the eleven ACTS components, all of which were successfully avoided during

our replay with the help of 1.x-way mapping. One error discovered, for example, was that a

reference to a connected component was initialized by simply calling its constructor. This did not

break the architecture-code conformance, but it was not allowed by the myx.fw framework.

During the evaluation, we also found some other mismatches between the architecture

and code that we believe were caused by programmers’ work in user-defined code. One

mismatch that we found, for example, was that the Trace Publish Extract Links View component

actually did not use its out interface at all. In other words, it did not use any resource (e.g.

www.manaraa.com

153

making any method call) through that interface. This was an error that 1.x-way mapping cannot

address at this point, although we believe it was relatively easy to handle with some additional

work done (e.g. static program definition/usage analysis) in the future. This kind of negating

errors, as well as the inducing errors discussed in Section 4.4.4, are two kinds of problems that

further study will address.

Another problem found through code examination was that the code of the Trace

Preference View component actually accessed the code of the Tracelink Controller component,

even though they were not directly connected in the architecture as shown in Figure 6-5. This

was a typical inducing error mentioned above. What was special in this case is that the reference

to the Tracelink Controller component was actually passed from Tracelink View to Trace

Preference View in the form of method parameter. Again, this kind of problem can be

completely avoided if we require that the architecture-prescribed code of a component can only

be accessed by the architecture-prescribed code of other components, as we specifically

discussed in Section 4.4.4.

6.3.3 Threats	
 to	
 Validity	

There are two primary risks to the validity of this evaluation. One is that we simulated,

instead of using a real a software development scenario, by recovering and replaying

development changes in a project. The other risk is again related to the application of an

architecture framework. Both are discussed and justified below.

Frist, some development changes could not be recovered from examining the commit

history of the project repository, and thus failed to be replayed during the evaluation. For

example, a single checkin in the project repository could involve the addition of more than one

architecture component. As discussed earlier, we could not recover the exact order of how these

www.manaraa.com

154

components were added. Even for a single component, there were also some editing operations

that were lost since the repository can only record snapshots of the project development. In

essence, we recovered the development history based on a series of development snapshots.

Thus, it was almost impossible to recover a complete history of the project development.

The use of the myx.fw framework also affected the result of how 1.x-way mapping could

help to prevent mistaken changes of architecture-prescribed code, even though measures were

already taken to keep the effect minimal as discussed above. An architecture framework

facilitates the architecture-implementation mapping by providing well understood

implementations, which assist developers in implementing systems that conform to the

prescriptions and constraints of the architecture. From this perspective, it was inevitable that the

discovered code changes that invalidate the architecture would be different from those without

using an architecture framework.

We believe our collective results are sustainable despite these risks because (1) all the

essential changes and milestones of the project were covered in the evaluation, which was

verified by one of original developers of the project; (2) the use of software frameworks is quite

popular in complex software development, not to mention that additional measures were already

taken in this regard during our evaluation. Of course, it would require a long-term study of 1.x-

way mapping in real software development to completely address these two concerns.

6.3.4 Conclusion	

Evaluation II provides results regarding how 1.x-way mapping can be used in the

mapping of structural architecture changes to the code. All the recovered architecture changes

were replayed and most were automatically mapped to the code using the 1.x-way mapping tool.

They all ended up being correctly recorded in the architecture change model. This was verified

www.manaraa.com

155

by a manual examination of the model. For those changes that could not be mapped to code in a

completely automatic manner, they were due to missing application logic. At this point, 1.x-way

mapping also played a positive role in the sense that it automatically updated the architecture-

prescribed code and sent notifications to user-defined code, so that we were able to solely focus

on implementation details. During this process, change analysis and refinement greatly

facilitated the map-to-code process given that many duplicate or unrelated changes were simply

filtered out. It acted as a bridge between the architecture change model and the mapping tool.

Significantly, the architecture remained consistent with the code structure after the map-to-code

process was done, verified by an ArchStudio tool called AIM Launcher. Based on these results,

an initial conclusion can be safely drawn that the change management mechanisms of 1.x-way

mapping work as designed, and specific kinds of architecture changes can be automatically

mapped to code in specific ways. As mentioned earlier, we intend to further validate this through

a long-term study with a real software project.

With respect to code changes, the focus of 1.x-way mapping is on the prevention of

mistaken changes to architecture-prescribed code. At this point, a number of errors were

discovered during our replay of the development history. However, most of these errors were

framework specific in the sense that the code simply did not follow the myx.fw framework

programming rules (e.g. getting the reference though getFirstRequiredServiceObject). Only a

few errors were direct results of accidentally changing the architecture-prescribed code. A most

common case discovered was that the variable name of an interface in the code was not same as

what is defined in the architecture. Overall, the accidental changes of architecture-prescribed

code in the evaluation were not as many as we expected. We believe this was primarily due to:

www.manaraa.com

156

(1) the original developers of ACTS were graduate students that were in the architecture area. (2)

the versions uploaded to the repository were generally those that were well validated.

As noted earlier, a number of other programmer-induced negative changes (e.g. negating,

inducing, etc.) were also discovered. At this point, all we can say is that 1.x-way mapping makes

the discovery of these errors easier since the architecture is accessed in an explicit manner. What

can be further done to avoid these errors is as what is suggested in Section 4.4.4, aided with

static program analysis. This is one of our future tasks, and we believe 1.x-way mapping has

potentials to completely address these issues.

6.4 Evaluation III: Replaying Changes of 1.x-Way Mapping

To evaluate how the automation of change mapping would vary when behavioral changes

were involved, we remade changes done to ArchStudio in the development of the 1.x-way

mapping tool itself with the developed tool. All the changes made to the ArchStudio architecture

in previous projects (including the project in Evaluation II) were structure oriented, since

ArchStudio itself only had a structural model and support for behavioral modeling (e.g. a fully-

featured state diagram editor) was also limited. Here, behavioral changes are also considered.

6.4.1 Evaluation	
 Method	

We applied the same evaluation method here as described above with ACTS. Again, the

replaying process was based on Eclipse’s development and runtime workbench shown in Figure

6-2. The set up in the Eclipse development workbench was exactly same, with ArchStudio

installed as plug-in and the developed 1.x-way mapping tool in the workspace. The difference in

the runtime workbench was that its workspace now contained the refactored ArchStudio code

www.manaraa.com

157

plus the 1.x-way mapping tool under development. This was also the place where we replayed

the development history.

As in Evaluation II, recovering development history in this evaluation involved the usage

of the Subclipse and Trac systems. A separate branch was created in the ArchStudio Subversion

repository for our 1.x-way mapping when the project began. A difference was that there were

detailed notes available in this case since I am the original developer. As a result, a more

complete history was recovered - starting from March 2011 when the branch was created to

September 2011 when the implementation was completed and a demo video was created. In

total, there were sixty commits during this period.

Replaying recovered changes was also similar to what we did with ACTS: we manually

made all the recovered architecture changes, mapped them to code with the 1.x-way mapping

tool, and again manually made necessary changes in user-defined code. Only in this case a

number of adapted behavioral diagrams were involved. Figure 6-6 shows the architecture

diagrams of our 1.x-way mapping tool. The sequence diagram in the figure enforced how the

mapping tool interacted with the code generator and notifier exactly as described at the

beginning of Section 4.2. The code was directly generated from these diagrams and they were

kept consistent.

www.manaraa.com

158

www.manaraa.com

159

Figure 6-6: Architecture diagrams of 1.x-way mapping.

6.4.2 Results	

In the evaluation, 118 architecture changes were recorded. 90 of these changes (about 76

percent) were automatically mapped to code, with the rest semi-automatically handled. Notice

that the automation rate was even higher than what occurred when replaying the ACTS project.

This was because most behavioral changes actually do not require manual intervention. There

was one case in the evaluation that we had to manually respond to a behavioral change when a

sequence diagram was removed. Correspondingly, we had to manually implement the specified

operation in the user-defined code. In some other cases, we had to manually add Java exception

handling statements to the generated code since our diagrams do not support this, and these

changes were also classified as semi-automatically handled.

www.manaraa.com

160

 Auto Semi-auto Total

Link Changes 15 _ 15

Component Changes 37 22 59

Behavior Changes 38 6 44

Total 90 28 118

Table 6-3: Results of Evaluation III.

Change analysis and refinement as discussed in Section 5.2 are applicable to the

behavioral changes as well. Not only recorded behavioral changes are refined, but also the

refined behavioral changes are further refined against the component changes. For example, all

the behavior changes that are made on a newly added component will be discarded and only an

Add Component change will be processed in the end. This design also contributed to the high

automation rate of behavioral changes during our evaluation.

6.4.3 Threats	
 to	
 Validity	

A main threat to the validity of this evaluation is that we replayed the development

history of our own project. On the one hand, this self-demonstration further proved the

effectiveness of our approach since the same kind of approach can be used to develop itself. On

the other hand, however, biases may also be induced. First of all, I was fully aware of the system

as its original designer and developer, and chances were relatively low that I would accidentally

change architecture-prescribed code. This is also an important reason that code changes were not

studied in this evaluation, just to make the whole process more fair. Moreover, I knew the

development history already at the beginning of the evaluation. This may not have a direct

impact on the evaluation results since all I did was following the commit record and replaying

changes. However, it is still possible that at some point I may subconsciously take some actions

favorable to the following development.

www.manaraa.com

161

Another threat concerns that this was still a replaying process. As discussed earlier, it was

inevitable that some development activities failed to be recovered, even though it was done with

the help of detailed notes in this evaluation. Overall, the missing changes may to some extent

affect the specific automation rate, but we do not expect essentially different results to be

reached. This was based on the design of 1.x-way mapping and the fact that all types of changes

shown in Figure 4-7 were covered in our evaluation. For example, if there were situations where

repetitive changes had to be made to the generated code, what could be done was to change our

code generator to make it more customizable as what we did in Evaluation I. Finally, note that

scalability is not specifically addressed in our evaluation. In other words, it is still to be further

validated how 1.x-way mapping performs in practice when the number of models or model

changes increases.

6.4.4 Conclusion	

Automatic mapping of behavioral architecture and its changes to the code is an important

feature of 1.x-way mapping. In particular, we noticed in this evaluation that most behavioral

changes actually were mapped to code in a complete manner and no further manual work was

required. Change notifications, however, were still sent to user-defined code for the purpose of

precaution. For those behavioral changes where users’ manual work was involved, most of them

were to complete the generated code, instead of addressing consistency issues. As discussed

earlier, this was primarily due to the limitations or incompleteness of current behavioral models

(e.g. sequence diagrams), not the design of 1.x-way mapping. It is important to note that the

conclusion drawn here so far is only applicable to the behavioral models described in Chapter 4

of the dissertation. It is our future work to explore how 1.x-way mapping can be used to support

www.manaraa.com

162

other behavioral models, especially those formal models that are often based on process algebras,

such as CSP, Pi-calculus, and so on.

6.5 Discussion: Generalization of Results

The evaluations presented in this chapter validate the hypothesis of this dissertation. 1.x-

way mapping can be applied in the development of a realistic system to prevent its architecture-

prescribed code from being changed by programmers, and support automatic mapping of

structural and behavioral architecture changes to code. Note that this was only done in the

context of ArchStudio. In other words, what has been validated is that the hypothesis about 1.x-

way mapping is true with the ArchStudio system and its derivative systems, ACTS and xMapper.

Below we discuss why we believe the collected results can be generalized to other real

applications.

First of all, most technologies used in the development of the ArchStudio system are well

understood and have been widely used in other existing systems, such as the Java programming

language, the component-and-connector architecture model, the Eclipse platform, and the XML

technologies. Compared with them, the myx.fw framework that ArchStudio was built upon may

not be common. However, specific concepts and patterns that the framework includes (e.g. class

inheritance, callback lifecycle methods, etc.) are widely adopted as well. In particular, the use of

frameworks, middleware, or domain-specific architectures is becoming increasingly important in

today’s software development. From this perspective, we believe the conclusions made in the

evaluations, such as how deep separation can facilitate the use of a framework in Evaluation I,

and automatic mapping of architecture changes in Evaluation II and III, are not limited to the

ArchStudio system.

www.manaraa.com

163

Second, complexity, changeability, conformity, and invisibility are identified as four

essential properties of modern software systems [16]. We believe ArchStudio is also

representative in terms of these properties. As mentioned earlier, ArchStudio consists of around

85KSLOC and forty architecture components. Its implementation involves the activities of File

I/O, GUIs, code generation, and dynamic instantiation. In addition, ArchStudio has been

extended in several research projects, where significant changes were made to its architecture

and code. Significantly, the development and evolutions of ArchStudio were committed

independently (e.g. by different people and for different purposes). ArchStudio is currently used

in a couple of universities and companies. Thus, it is also under constant pressure of conforming

to new needs of ArchStudio users. Invisibility is an inherent property of all software systems,

and ArchStudio is not the exception.

Finally, the previous research experience with ArchStudio in our group reveals the

effectiveness of ArchStudio both as a development platform and as a case study example in

software architecture research. A number of important research results have been generated and

validated based on the ArchStudio system, including software traceability [8], dynamic

adaptation [59], product line architectures [68], and software security [121]. On the one hand,

ArchStudio plays an important role in fostering and validating these research results; on the other

hand, the success of the corresponding research further proves the generalization of ArchStudio-

based research results, especially in the area of software architecture.

www.manaraa.com

164

7 Conclusion

In this study, a new architecture-implementation mapping approach, 1.x-way mapping, is

developed to maintain conformance between software architecture and code during development.

The focus of the work is regulating the implementation of software architecture with a code

separation mechanism, explicit modeling of architecture changes, automatic regeneration of

architecture-prescribed code, and sending architecture change notifications to user-defined code.

This approach has a number of desirable properties, including suppression of mistaken changes

of architecture-prescribed code, automatic mapping of specific kinds of architecture changes to

code in specific ways, and support for the mapping of behavioral architecture specifications to

code.

7.1 Summary

This research tackles the issue of maintaining architecture-implementation conformance

during software development. This is essential to architecture-centric software development, but

fails to be addressed by existing approaches. Current architecture-implementation mapping

approaches are deficient in that change mapping between architecture and code is weakly

supported and most approaches are structure-oriented only. This is partially due to architecture

being implemented in ad hoc ways, and architecture-prescribed code is mixed with

implementation details. In particular, no explicit change management mechanism is provided to

either regulate or analyze changes that are made to the two types of artifacts. As a result,

significant overhead is incurred in architecture-centric development to manually maintain

architecture-implementation conformance – overhead that few are willing to bear.

www.manaraa.com

165

1.x-way mapping addresses the issues of change management and behavioral mapping to

maintain architecture-implementation conformance. It regulates the implementation of software

architecture by separating architecture-prescribed code and user-defined details of each

architecture component into two independent program elements. This is called deep (linguistic)

separation. Based on it, manual changes made by programmers are limited to user-defined code,

and cannot contaminate architecture-prescribed code. In this way, architecture-implementation

conformance is enhanced. The complexity of reverse engineering and roundtrip engineering is

also avoided. In addition, deep separation enables support for behavioral architecture-

implementation mapping with system dynamics modeled as UML-like sequence diagrams and

state diagrams, from which code can be automatically generated in a way that maintains code

separation.

With regard to architecture changes that break architecture-implementation conformance,

an architecture change model is maintained in 1.x-way mapping to automatically record and

classify various architecture changes. The recorded changes are organized into different change

sessions, each of which comprises a list of specific changes and is mapped to code as a unit. All

the changes in a change session are automatically mapped to code by completely regenerating

architecture-prescribed code of modified components, with the code of other components not

affected. For architecture changes that may affect user-defined code, architecture change

notifications are also generated and delivered to corresponding user-defined code. In particular,

change analysis and refinement is enforced during this process so that changes that together have

no impact on the code can be automatically filtered away. By this means, not only unnecessary

mappings are avoided, but also mappings that should be made are automated in specific ways.

www.manaraa.com

166

1.x-way mapping is implemented and integrated as a tool called xMapper in ArchStudio

4, an Eclipse-based architecture development environment. The modularity and extensibility of

ArchStudio and Eclipse played a positive role during the implementation. These two tools not

only are easy to extend with new capabilities, but also provide a number of technologies, such as

the JET code generation engine, Eclipse Markers, and the BNA framework, that were directly

exploited in our implementation. To validate the utility of 1.x-way mapping, we applied it to the

code and evolutions of ArchStudio 4. Specifically, we refactored the code of ArchStudio and

replayed changes that had been made to ArchStudio in two research projects by redoing them

with xMapper. The results show that (1) deep separation of 1.x-way mapping is applicable to the

implementation of a program of significant complexity; (2) most architecture changes can be

mapped to code in a completely automatic manner with the help of 1.x-way mapping, and the

rest is semi-automatically handled; (3) the extensive application of 1.x-way mapping in complex

software development, however, requires further development of modeling and code generation

technologies.

7.2 Future Work

Architecture-implementation mapping directly determines the degree to which software

architecture can be used in development to improve software productivity and quality. We

believe that the 1.x-way mapping approach developed in this study can bring new power to some

architecture-centric development activities, including architecture-based dynamic adaptation,

product line architectures, and advanced architecture change management. Below some future

enhancements and potential applications of 1.x-way mapping are identified.

www.manaraa.com

167

7.2.1 Remaining	
 Challenges	
 of	
 Architecture-­‐Implementation	
 Mapping	

1.x-way mapping focuses on protecting architecture-prescribed code and mapping

architecture changes to code to maintain architecture-implementation conformance. One

remaining challenge, however, is how to prevent programmers’ work in user-defined code from

invalidating the architecture. As discussed earlier, user-defined code may invalidate the

architecture by inducing new negative properties or negating existing architecture elements

without using them. For example, the user-defined code of a component may reference another

component that this component is not connected to, or the code may not use services provided by

a connected component at all. Either way, it is hard to map this back to the architecture during

software development, especially considering that the code-to-architecture mapping actually

conflicts with the principle of architecture-centrality. We believe 1.x-way mapping has the

potential to completely address this problem. As discussed in Section 4.4.4, what can be done is

to enforce that user-defined code of a component be only accessed by its architecture-prescribed

code based on the deep separation mechanism. In this way, illegal accesses of the user-defined

code from other components are avoided.

Another potential enhancement to 1.x-way mapping is to send change requests, instead of

change notifications, when user-defined code has to be modified in response to certain

architecture changes. As discussed in Section 4.4.3, a change request describes what needs to be

changed in user-defined code and provides more information regarding what to modify to

accomplish a change than a simple change notification. Sending a change request is also feasible

because of the way architecture resources are used in user-defined code of 1.x-way mapping: all

accesses go through a single reference to the architecture. Static program analysis can be applied

in this case.

www.manaraa.com

168

7.2.2 Architecture-­‐based	
 Dynamic	
 Adaptation	

Dynamic adaptation refers to the capability of a software system that can modify its own

behavior in response to changes in its operating environment (e.g. end-user input, external

sensors, etc.) [116]. Architecture-based adaptation brings promising results in this regard. This is

an approach where changes are first formulated in, and reasoned over, an explicit architectural

model when the environment changes. Changes to the architectural model (usually at the level of

components and connectors) are reflected in modifications to the application’s implementation,

while ensuring that the model and the implementation are consistent with one another. It is at this

point that 1.x-way mapping has the potential to play a significant role by dynamically mapping

architecture changes to code.

This can be performed in two specific ways. First, the architecture-prescribed code of an

involved component can be regenerated, recompiled, and reloaded at runtime, without requiring

user-defined code to be changed. Given that architecture-prescribed code may include the

implementation of system dynamics, which is elaborated in Section 4.5, it becomes possible to

dynamically associate a certain behavior with a component or several components. This is a

significant improvement over existing architecture-based adaptation mechanisms, which usually

can only support structural adaptations (adding components, links, etc.). Second, switches can be

made at runtime between alternatives of user-defined implementations (e.g. using different

system libraries) for an involved component. This time architecture-prescribed code remains

stable, and its requests are dynamically redirected to different user-defined implementations

based on the code integration framework presented in Section 4.3.2. By this means, a finer

degree of granularity is enabled for dynamic adaptation.

www.manaraa.com

169

Another potential benefit that 1.x-way mapping brings to architecture-based adaptation is

its architecture change model. It provides a decent form to organize descriptions of formulated

architecture changes. Specific issues that need to be addressed for dynamic adaptation include

protecting integrity of adapted systems and identifying quiescent states when adaptation can

safely occur. 1.x-way mapping induces additional difficulties at this point with one more layer of

indirection in the implementation of each architecture component.

7.2.3 Implementation	
 of	
 Product	
 Line	
 Architectures	

Keeping the cost of software changes low is another requirement in software evolution.

This is particularly emphasized when making changes that are anticipated before system

development starts. Anticipated changes usually occur when developing a family of software

products, or a product line. For example, producing a new software product simply by extending

a related existing product (e.g. adding an optional capability or customizing for different

platforms). At this point, being able to reuse existing code that encapsulates domain, business,

and technology information as much as possible becomes important. The use of product lines has

become a principled form of software reuse over the past decade [149]. This is partially due to

the application of product line architectures (PLAs), an architecture-centric approach to product

lines. A PLA explicitly specifies variation points (e.g. optional and alternative elements) inside

the reference architecture of an entire product line to differentiate products. Implementing a PLA

is also a mapping problem, except that multiple products composed of core elements and

variation points are involved. During this process, it is important that separation of concerns can

be achieved among different component implementations as it is in the architecture. Otherwise

extensive changes have to be made to the code of existing components to introduce variations,

www.manaraa.com

170

and software reusability is compromised. However, separating concerns in the implementation

artifacts along preferred boundaries involves significant challenges.

We believe 1.x-way mapping can help to address the implementation problem of PLAs.

On the one hand, architecture-prescribed code in 1.x-way mapping does not include details (e.g.

platform specifics, domain knowledge, algorithm, system library usage, etc.) regarding how a

programmer implements an operation, and thus, is sustainable to variations of these

implementation specific concerns. Libraries of architecture implementations can be constructed

from the same set of operations provided by user-defined code. On the other hand, user-defined

code is relatively independent of architecture-prescribed code as well. It does not contain

knowledge about architecture topology and message exchange among components, which are

encapsulated in architecture-prescribed code. As a result, a separation of decision space is

achieved within the implementation of each component, and both parts can vary independently.

This has two implications to current PLA implementations. First, more variations are enabled for

a PLA. Traditionally, variation points in a PLA are expressed at the level of components and

connections. With 1.x-way mapping, they can be refined into individual components. For

example, the usage of a different signal-processing algorithm can be specified as a variation of a

component, which corresponds to different user-defined code. Or, a component can be

customized with an optional interface. At this point, architecture-prescribed code may be

regenerated and used without necessarily changing user-defined code. Second, the code

reusability of each architecture component also increases. Since it is hard to completely separate

concerns among component implementations as discussed above, 1.x-way mapping makes it

possible to reuse a portion of an existing component’s code (e.g. architecture-prescribed code or

user-defined code), instead of recoding the whole component to introduce variations.

www.manaraa.com

171

7.2.4 Advanced	
 Architecture	
 Change	
 Management	

The architecture change model developed in 1.x-way mapping provides information for

architecture-based code regeneration and architecture change notifications, both of which are

specific to architecture-implementation mapping. We believe more advanced change

management activities are enabled based on the architecture change model, including parallel

change sessions, change visualization, and change replay.

Parallel change session means multiple (unmapped or open) change sessions can co-exist

in the architecture change model. Each session contains changes that modify different portions of

the architecture, made by different people for different purposes, and be mapped to the code

independently. Moreover, users can even switch among different change sessions (e.g. for

different tasks). The architecture changes they made will correspondingly be recorded into

different change sessions, and concurrent modification of the architecture model is potentially

supported. One challenge to be addressed, however, is managing the relationships (e.g. mutual

exclusion, dependency) between concurrent change sessions.

Another possible application based on architecture change model is to visualize the

changes of each change session. For example, selecting a change session on the left panel of

Archipelago displays all the architecture elements that are changed in that session in the editor

panel of Archipelago. Some additional information related with the changes may also be shown,

such as change time, author, and comments made. Users can then further select what to do with

each specific change session, such as redo/undo. This feature is especially useful in an

architecture-centric development environment, where architecture plays a central role in the

development lifecycle.

www.manaraa.com

172

In essence, the architecture change model makes architecture changes an independent

artifact. From this perspective, an architecture change model can be shared, analyzed, or reused

just like some other software artifacts (e.g. requirements specification). For example, an

architecture change model can be analyzed to see if a specific change session in it induces any

errors. Or we can reuse a change session by replaying all the included changes to an architecture.

In this way, people can work concurrently on the same architecture simply by exchanging or

sharing the associated architecture change model. All these represent potential applications of the

architecture change model in 1.x-way mapping.

www.manaraa.com

173

8 Reference

[1] Agha, G. Actors: A Model of Concurrent Computation in Distributed Systems. MIT

Press, 1986.
[2] Aizenbud-Reshef, N., Nolan, B.T., et al. Model Traceability. IBM Systems Journal.

45(3), p. 515-26, 2006.
[3] Aldrich, J., Chambers, C., et al. ArchJava: Connecting Software Architecture to

Implementation. In Proceedings of the 24th International Conference on Software
Engineering. p. 187-197, ACM. Orlando, FL, 2002.

[4] Allen, R. A Formal Approach to Software Architecture. Ph.D. Thesis. Carnegie Mellon
University, p. 248, 1997. http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-144.pdf.

[5] Arnold, R.S. Software Change Impact Analysis. 376 pgs., IEEE Computer Society
Press, 1996.

[6] Aßmann, U. Automatic roundtrip engineering. Electron Notes Theor Comput Sci
(ENTCS). 82(5), p. 1–9, 2003.

[7] Asuncion, H., François, F., et al. An End-To-End Industrial Software Traceability Tool.
In Proceedings of the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Int'l Symposium on the Foundations of Software
Engineering (ESEC/FSE). p. 115-124, Dubrovnik,Croatia, Sept 3-7, 2007.

[8] Asuncion, H.U., Asuncion, A.U., et al. Software traceability with topic modeling. In
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering -
Volume 1. p. 95-104, ACM: Cape Town, South Africa, 2010.

[9] Atkinson, C. and Kuhne, T. Model-Driven Development: A Metamodeling Foundation.
IEEE Software. 20(5), 2003.

[10] Balzer, R. A 15 Year Perspective on Automatic Programming. IEEE Trans. Softw. Eng.
11(11), 1985.

[11] Bass, L. and Kazman, R. Architecture-Based Development. Carnegie Mellon University,
Technical Report Report CMU/SEI-99-TR-007, April 1999, 1999.

[12] Batory, D. Scaling Step-Wise Refinement. In the 25th International Conference on
Software Engineering. p. 187 - 197: Portland, Oregon 2003.

[13] Bernstein, P.A. Middleware: a model for distributed system services. Commun. ACM.
39(2), p. 86-98, 1996.

[14] Boocock, P. The Jamda Project. http://jamda.sourceforge.net/.
[15] Bowman, I.T., Holt, R.C., et al. Linux as a Case Study: Its Extracted Software

Architecutre. In Proceedings of the 21st International Conference on Software
Engineering (ICSE'99). Los Angeles, CA, May 16-22, 1999.

[16] Brooks, F.P. No Silver Bullet: Essence and Accidents of Software Engineering. IEEE
Computer. April, 1987.

[17] Brown, A. An introduction to Model Driven Architecture.
http://www.ibm.com/developerworks/rational/library/3100.html, 2004.

[18] Budinsky, F., Finnie, M., et al. Automatic Code Generation from Design Patterns. IBM
Systems Journal. 35(2), p. 151--171, 1996.

www.manaraa.com

174

[19] Carzaniga, A., Rosenblum, D.S., et al. Design and Evaluation of a Wide-Area Event
Notification Service. ACM Transactions on Computer Systems. 9(3), p. 332-383, August,
2001.

[20] Cassou, D., Balland, E., et al. Leveraging software architectures to guide and verify the
development of sense/compute/control applications. In Proceeding of the 33rd
International Conference on Software Engineering. p. 431-440, ACM: Waikiki,
Honolulu, HI, USA, 2011.

[21] Chalabine, M. and Kessler, C. A Formal Framework for Automated Round-Trip Software
Engineering in Static Aspect Weaving and Transformations. In Proceedings of the 29th
international conference on Software EngineeringIEEE Computer Society, 2007.

[22] Chikofsky, E.J. and Cross II, J.H. Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Software. 7(1), p. 13-17, January/February, 1990.

[23] Clayberg, E. and Rubel, D. Eclipse Plug-ins. 3 ed. Addison-Wesley Professional, 2008.
[24] Cleaveland, J.C. Building Application Generators. IEEE Software. 5(4), p. 25 - 33, 1988.
[25] Cleaveland, J.C. Program Generators with XML and Java. 448 pgs., Prentice-Hall,

2001.
[26] Clements, P., Bachmann, F., et al. Documenting Software Architectures: Views and

Beyond. Addison Wesley, 2002.
[27] CollabNet. Subclipse. http://subclipse.tigris.org/, HTML, 2004.
[28] Collins-Sussman, B., Fitzpatrick, B.W., et al. Version Control with Subversion.

http://svnbook.red-bean.com/, HTML, 2004.
[29] Cook, S. Domain-Specific Modeling and Model Driven Architecture. MDA Journal.

January 2004, 2004.
[30] Czarnecki, K. and Eisenecker, U.W. Components and generative programming (invited

paper). ACM SIGSOFT Software Engineering Notes. 24(6), p. 2 - 19, 1999.
[31] Czarnecki, K. and Helsen, S. Classification of Model Transformation Approaches. In

Proceedings of the OOPSLA'03 Workshop on the Generative Techniques in the Context
Of Model-Driven Architecture: Anaheim, California, USA., 2003.

[32] Dashofy, E., van der Hoek, A., et al. A Comprehensive Approach for the Development of
Modular Software Architecture Description Languages. ACM Transactions on Software
Engineering and Methodology (TOSEM). 14(2), p. 199-245, April, 2005.

[33] Dashofy, E. The Myx Architectural Style. University of California, Irvine, Whitepaper
Report, 2006.

[34] Dashofy, E. Myx and myx.fw. http://www.isr.uci.edu/projects/archstudio/myx.html, 2008.
[35] Dashofy, E.M., Medvidovic, N., et al. Using Off-the-Shelf Middleware to Implement

Connectors in Distributed Software Architectures. In Proceedings of the 21st
International Conference on Software Engineering (ICSE'99). p. 3-12, Los Angeles, CA,
May 16-22, 1999.

[36] Dashofy, E.M., van der Hoek, A., et al. A Highly-Extensible, XML-Based Architecture
Description Language. In Proceedings of the Working IEEE/IFIP Conference on
Software Architecture (WICSA 2001). Amsterdam, The Netherlands, August 28-31,
2001.

[37] Dashofy, E.M., van der Hoek, A., et al. An Infrastructure for the Rapid Development of
XML-based Architecture Description Languages. In Proceedings of the 24th International
Conference on Software Engineering (ICSE 2002). p. 266-276, ACM. Orlando, Florida,
May, 2002.

www.manaraa.com

175

[38] Dashofy, E.M. Supporting Stakeholder-Driven, Multi-View Software Architecture
Modeling. Ph.D. Thesis. Information and Computer Science, University of California,
Irvine, p. 294, 2007.

[39] Dashofy, E.M., Asuncion, H., et al. ArchStudio 4: An Architecture-Based Meta-
Modeling Environment. In Proceedings of the 29th International Conference on Software
Engineering (ICSE 2007). Informal Research Demonstrations, Companion Volume, p.
67-68, Minneapolis, MN, May 20-26, 2007.

[40] Denno, P., Steves, M.P., et al. Model-Driven Integration Using Existing Models. IEEE
Software. 20(5), 2003.

[41] DeRemer, F. and Kron, H.H. Programming-in-the-Large versus Programming-in-the-
Small. IEEE Transactions on Software Engineering. 2(2), p. 80-86, June, 1976.

[42] Diaz-Pace, J.A., Carlino, J.P., et al. Assisting the synchronization of UCM-based
architectural documentation with implementation. In Software Architecture, 2009 &
European Conference on Software Architecture. WICSA/ECSA 2009., 2009.

[43] Doug Brown, J.L., Tony Mason. lex & yacc. O'Reilly Media, 1992.
[44] Eclipse. Eclipse JET Project. http://www.eclipse.org/modeling/m2t/?project=jet.
[45] Eclipse. ATL - a model transformation technology. http://www.eclipse.org/atl/.
[46] Engels, G., Hücking, R., et al. UML collaboration diagrams and their transformation to

java. In Proceedings of the 2nd international conference on The unified modeling
language: beyond the standard. p. 473-488, Springer-Verlag: Fort Collins, CO, USA,
1999.

[47] Feiler, P.H., Gluch, D.P., et al. The Architecture Analysis & Design Language (AADL):
An Introduction. CMU/SEI-2006-TN-011, Report, 2006.

[48] Fickas, S.F. Automating the Transformational Development of Software. IEEE Trans.
Softw. Eng. 11(11), 1985.

[49] Fielding, R.T. and Taylor, R.N. Principled Design of the Modern Web Architecture.
ACM Transactions on Internet Technology (TOIT). 2(2), p. 115-150, May, 2002.

[50] Fowler, M. UML Distilled: A Brief Guide to the Standard Object Modeling Language.
3rd ed. Addison Wesley: Reading, MA, 2003.

[51] Fowler, M. UmlMode. http://martinfowler.com/bliki/UmlMode.html, 2003.
[52] France, R. and Rumpe, B. Model-driven Development of Complex Systems: A Research

Roadmap. In Future of Software Engineering 2007, Briand, L. and Wolf, A. eds. IEEE-
CS Press, 2007.

[53] Gamma, E., Helm, R., et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional Computing Series. Addison-Wesley
Professional: Reading, MA, 1995.

[54] Garlan, D. and Shaw, M. An Introduction to Software Architecture. In Advances in
Software Engineering and Knowledge Engineering, Ambriola, V. and Tortora, G. eds. p.
1-39, World Scientific Publishing Company: Singapore, 1993.

[55] Garlan, D., Allen, R., et al. Architectural Mismatch: Why Reuse Is So Hard. IEEE
Software. 12(6), p. 17-26, November, 1995.

[56] Garlan, D. Style-Based Refinement for Software Architecture. In Proceedings of the
Second International Software Architecture Workshop (ISAW-2). p. 72-75, San
Francisco, CA, October, 1996.

www.manaraa.com

176

[57] Garlan, D., Monroe, R.T., et al. ACME: An Architecture Description Interchange
Language. In Proceedings of the CASCON '97. p. 169-183, IBM Center for Advanced
Studies. Toronto, Ontario, Canada, November, 1997.

[58] Georgas, J.C., Dashofy, E.M., et al. Architecture-Centric Development: A Different
Approach to Software Engineering. ACM Crossroads, issue on Software Engineering.
12(4), Summer, 2006.

[59] Georgas, J.C. and Taylor, R.N. Policy-Based Self-Adaptive Architectures: A Feasibility
Study in the Robotics Domain. In Proceedings of the ACM/IEEE International Workshop
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2008), held
in conjunction with ICSE 2008. Leipzig, Germany, May 12-13, 2008.

[60] GNU. Bison - GNU parser generator. http://www.gnu.org/software/bison/.
[61] Greenfield, J., Short, K., et al. Software Factories: Assembling Applications with

Patterns, Models, Frameworks, and Tools. Wiley; 1st edition, 2004.
[62] Gruber, O., Hargrave, B.J., et al. The Eclipse 3.0 platform: adopting OSGi technology.

IBM Systems Journal. 44(2), p. 289-299, July, 2005.
[63] Hailpern, B. and Tarr, P. Model-driven development: The good, the bad, and the ugly.

IBM Systems Journal. 45(3), 2006.
[64] Hayes-Roth, B., Pfleger, K., et al. A Domain-Specific Software Architecture for Adaptive

Intelligent Systems. IEEE Transactions on Software Engineering. 21(4), p. 288-301,
April, 1995.

[65] Hazeline, U.A. Architecture-Centric Traceability for Stakeholders (ACTS).
http://tps.ics.uci.edu/svn/projects/archstudio4/branches/traceability/.

[66] Hazeline, U.A. Architecture-Centric Traceability for Stakeholders
(ACTS). Thesis. Information and Computer Science, University of Califorina, Irvine, 2009.
[67] Heineman, G.T. and Councill, W.T. Component-Based Software Engineering: Putting the

Pieces Together. Addison-Wesley: Reading, Massachusetts, 2001.
[68] Hendrickson, S.A. and van der Hoek, A. Modeling Product Line Architectures through

Change Sets and Relationships. In Proceedings of the 29th International Conference on
Software Engineering (ICSE 2007). p. 189-198, Minneapolis, MN, May 20-26, 2007.

[69] Herrington, J. Code Generation in Action. Manning Publications Co., 2003.
[70] Hoare, C.A.R. Communicating sequential processes. viii+256 pgs., Prentice-Hall, 1985.
[71] Holzmann, G.J. The Model Checker SPIN. IEEE Transactions on Software Engineering.

23(5), p. 279-295, May, 1997.
[72] Hunt, A. and Thomas, D. The pragmatic programmer: from journeyman to master. 321

pgs., Addison-Wesley Longman Publishing Co., Inc., 1999.
[73] IBM. IBM Rational Software Development Platform. http://www-

01.ibm.com/software/info/developer/faq.jsp.
[74] Jackson, D. and Damon, C.A. Elements of Style: Analyzing a Software Design Feature

with a Counterexample Detector. IEEE Transactions on Software Engineering. 22(7), p.
484-495, 1996.

[75] Johnson, R. Frameworks = Components + Patterns. Communications of the ACM.
40(10), p. 39 - 42, October, 1997.

[76] Kadia, R. Issues Encountered in Building a Flexible Software Development
Environment: Lessons from the Arcadia Project. In Proceedings of the Fifth ACM
SIGSOFT Symposium on Software Development Environments. p. 169-180, ACM Press.
Tyson's Corner, Virginia, United States, December 9-11, 1992.

www.manaraa.com

177

[77] Kang, K.C., Kim, S., et al. FORM: A feature-oriented reuse method with domain-specific
reference architectures. Annals of Software Engineering. 5, p. 143-168, 1998.

[78] Karsai, G., Sztipanovits, J., et al. Model-Integrated Development of Embedded Software.
Proceedings of the IEEE. 91(1), p. 145-164, 2003.

[79] Kelly, S. and Tolvanen, J.-P. Domain-Specific Modeling: Enabling Full Code
Generation. Wiley-IEEE Computer Society Press., 2008.

[80] Kiczales, G., Lamping, J., et al. Aspect-Oriented Programming. In Proceedings of the
European Conference on Object-Oriented Programming (ECOOP'97). p. 220-242,
Jyväskylä, Finland, June 9-13, 1997.

[81] Kleppe, A., Warmer, J., et al. MDA Explained: The Model Driven Architecture: Practice
and Promise. 192 pgs., Addison-Wesley Professional, 2003.

[82] Krueger, C.W. Software Reuse. ACM Computing Surveys. 24(2), p. 131-183, 1992.
[83] Ledeczi, A., Balogh, G., et al. Model Integrated Computing in the Large. In Aerospace

Conference. p. 1-8, 2005.
[84] Lopez, N., Casallas, R., et al. Issues in mapping change-based product line architectures

to configuration management systems. In Proceedings of the 13th International Software
Product Line Conference. p. 21-30, Carnegie Mellon University: San Francisco,
California, 2009.

[85] Luckham, D.C., Kenney, J.J., et al. Specification and Analysis of System Architecture
Using Rapide. IEEE Transactions on Software Engineering. 21(4), p. 336-355, April,
1995.

[86] Magee, J., Dulay, N., et al. Specifying Distributed Software Architectures. In
Proceedings of the 5th European Software Engineering Conference (ESEC 95). 989, p.
137-153, Springer-Verlag, Berlin. 1995.

[87] Medvidovic, N. and Taylor, R.N. A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software
Engineering. 26(1), p. 70-93, January, 2000. Reprinted in Rational Developer Network:
Seminal Papers on Software Architecture. Rational Software Corporation,
<http://www.rational.net/%3E, 2001.

[88] Medvidovic, N., Mehta, N.R., et al. A Family of Software Architecture Implementation
Frameworks. In Proceedings of the 3rd IFIP Working International Conference on
Software Architectures. Montreal, Canada, August, 2002.

[89] Medvidovic, N., Rosenblum, D.S., et al. Modeling Software Architectures in the Unified
Modeling Language. ACM Transactions on Software Engineering and Methodology
(TOSEM). 11(1), p. 2-57, January, 2002.

[90] Medvidovic, N., Gruenbacher, P., et al. Bridging Models across the Software Lifecycle.
Journal of Systems and Software. 68(3), 2003.

[91] Mehta, N.R., Medvidovic, N., et al. Towards a Taxonomy of Software Connectors. In
Proceedings of the 2000 International Conference on Software Engineering. p. 178-187,
ACM Press. Limerick, Ireland, 4-11 June, 2000.

[92] Mellor, S.J. and Balcer, M.J. Executable UML: A Foundation for Model Driven
Architecture. 1st ed. 416 pgs., Addison-Wesley Professional, 2002.

[93] Mens, T. and Tourwe, T. A survey of software refactoring. IEEE Transactions on
Software Engineering. 30(2), p. 126-139, 2004.

www.manaraa.com

178

[94] Mezini, M. and Lieberherr, K. Adaptive plug-and-play components for evolutionary
software development. ACM SIGPLAN Notices. 33(10), p. 97 - 116, October 1998,
1998.

[95] Milner, R. A Calculus of Communicating Systems. 92, Springer-Verlag, 1980.
[96] Milner, R. Communication and Concurrency. Prentice Hall International Series in

Computer Science. Hoare, C.A.R. ed. Prentice Hall International: Hemel Hempstead,
Hertfordshire, UK, 1989.

[97] Milner, R., Parrow, J., et al. A calculus of mobile processes, I. Inf. Comput. 100(1), p. 1-
40, 1992.

[98] Moriconi, M., Qian, X., et al. Correct Architecture Refinement. IEEE Transactions on
Software Engineering. 21(4), p. 356-372, 1995.

[99] MSDN. Partial Class Definitions. http://msdn.microsoft.com/en-us/library/wa80x488(v=vs.80).aspx,
2005.

[100] Muccini, H., Dias, M., et al. Software Architecture-based Regression Testing. Journal of
Systems and Software. 79(10), p. 1379-1396, October, 2006.

[101] Murata, T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE.
77(4), p. 541-580, April, 1989.

[102] Murphy, G.C., Lai, A., et al. Separating features in source code: an exploratory study. In
Proceedings of the 23rd International Conference on Software EngineeringIEEE
Computer Society: Toronto, Ontario, Canada, 2001.

[103] Murphy, G.C., Notkin, D., et al. Software Reflexion Models: Bridging the Gap Between
Design and Implementation. IEEE Transactions on Software Engineering. 27(4), p. 364-
380, April, 2001.

[104] Murta, L.G.P., van der Hoek, A., et al. ArchTrace: Policy-Based Support for Managing
Evolving Architecture-to-Implementation Traceability Links. In Proceedings of the
Twenty-first IEEE/ACM International Conference on Automated Software Engineering
(ASE 2006). p. 135–144, Tokyo, Japan, September, 2006.

[105] Murta, L.P.G., van der Hoek, A., et al. Continuous and Automated Evolution of
Architecture-to-Implementation Traceability Links. Automated Software Engineering,
Special Issue on Selected Papers from the 21st International Conference on Automated
Software Engineering (ASE'2006). 15(1), p. 75-107, 2008.

[106] Niaz, I.A. and Tanaka, J. Code Generation From Uml Statecharts. In Proc. 7 th IASTED
International Conf. on Software Engineering and Application (SEA 2003). p. 315 - 321:
Marina Del Rey, 2003.

[107] Nickel, U., J\, et al. The FUJABA environment. In Proceedings of the 22nd international
conference on Software engineering. p. 742-745, ACM: Limerick, Ireland, 2000.

[108] Nistor, E., Erenkrantz, J.R., et al. ArchEvol: Versioning Architectural-Implementation
Relationships. In Proceedings of the 12th International Workshop on Software
Configuration Management. p. 99-111, Lisbon, Portugal, September 5-6, 2005.

[109] Nistor, E.C. Towards Maintaining Consistency between Architectural Models and Code.
UC Irvine, Report, 2005.

[110] Nistor, E.C. and van der Hoek, A. Explicit Concern-Driven Development with ArchEvol.
In Proceedings of the 2009 IEEE/ACM International Conference on Automated Software
EngineeringIEEE Computer Society, 2009.

[111] Ommering, R.v., Linden, F.v.d., et al. The Koala Component Model for Consumer
Electronics Software. IEEE Computer. 33(3), p. 78-85, March, 2000.

www.manaraa.com

179

[112] Oreizy, P., Medvidovic, N., et al. Architecture-Based Runtime Software Evolution. In
Proceedings of the 20th International Conference on Software Engineering (ICSE '98). p.
177-186, IEEE Computer Society. Kyoto, Japan, April, 1998.

[113] Oreizy, P., Gorlick, M.M., et al. An Architecture-based Approach to Self-Adaptive
Software. IEEE Intelligent Systems. 14(3), p. 54-62, May-June, 1999.

[114] Oreizy, P. Open Architecture Software: A Flexible Approach to Decentralized Software
Evolution. Thesis (Ph. D., Information and Computer Science) Thesis. Information and
Computer Science, University of California, 2000.
http://www.ics.uci.edu/~peymano/papers/thesis.pdf.

[115] Oreizy, P., Medvidovic, N., et al. Runtime software adaptation: framework, approaches,
and styles. In Companion of the 30th international conference on Software
engineeringACM: Leipzig, Germany, 2008.

[116] Oreizy, P., Medvidovic, N., et al. Runtime software adaptation: Framework, approaches,
and styles. In Companion of the 30th International Conference on Software Engineering,
Leipzig. p. 899-910, ACM: New York, NY, 2008.

[117] Parnas, D. Software Aging. In Proceedings of the 16th International Conference on
Software Engineering. Sorrento, Italy, 1994.

[118] Parnas, D.L. On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM. 15(12), p. 1053-1058, 1972.

[119] Parnas, D.L. Designing Software for Ease of Extension and Contraction. IEEE
Transactions on Software Engineering. 5(2), p. 128-137, 1979.

[120] Perry, D.E. and Wolf, A.L. Foundations for the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes. 17(4), p. 40-52, October, 1992.

[121] Ren, J. A Connector-Centric Approach to Architectural Access Control. Thesis.
Information and Computer Science, University of California, Irvine, p. 222, 2006.
http://www.ics.uci.edu/~jie/Thesis.pdf.

[122] Robbins, J.E., Hilbert, D.M., et al. Extending Design Environments to Software
Architecture Design. Automated Software Engineering. 5(3), p. 261-290, July, 1998.

[123] Sefika, M., Sane, A., et al. Monitoring Compliance of a Software System with Its High-
Level Design Models. In Proceedings of the 18th international conference on Software
engineering. p. 387 - 396: Berlin, Germany 1996.

[124] Seidewitz, E. What Models Mean. IEEE Software. 20(5), 2003.
[125] Selic, B. The Pragmatics of Model-Driven Development. IEEE Software. 20(5), 2003.
[126] Sendall, S. and Kozaczynski, W. Model Transformation: The Heart and Soul of Model-

Driven Software Dvelopment. IEEE Software. 20(5), 2003.
[127] Sendall, S. and Küster, J. Taming model round-trip engineering. In Proceedings of

Workshop on Best Practices for Model-Driven Software Development (part of 19th
Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications): Vancouver, Canada, 2004.

[128] Shaw, M., DeLine, R., et al. Abstractions for Software Architecture and Tools to Support
Them. IEEE Transactions on Software Engineering. 21(4), p. 314-335, April, 1995.

[129] Shaw, M. and Clements, P. The Golden Age of Software Architecture. IEEE Softw.
23(2), p. 31-39, 2006.

[130] Silva, I.A.d., Chen, P.H., et al. Lighthouse: coordination through emerging design. In
Proceedings of the 2006 OOPSLA workshop on eclipse technology eXchangeACM:
Portland, Oregon, 2006.

www.manaraa.com

180

[131] Software. Argo/UML. http://argouml.tigris.org/.
[132] Software, E. The Trac Open Source Project. http://trac.edgewall.org/.
[133] Spanoudakis, G. and Zisman, A. Software Traceability: A Roadmap Advances in

Software Engineering and Knowledge Engineering. Chang, S.K. ed. 3, World Scientific
Publishing, 2005.

[134] Spivey, J.M. The Z Notation: A Reference Manual. Prentice-Hall International Series In
Computer Science. 155 pgs., Prentice-Hall International: Englewood Cliffs, N.J., 1989.

[135] Steinberg, D., Budinsky, F., et al. EMF: Eclipse Modeling Framework (2nd Edition).
Addison-Wesley Professional, 2008.

[136] Sztipanovits, J. and Karsai, G. Model-Integrated Computing. Computer. 30(4), p. 110-
111, 1997.

[137] Sztipanovits, J. and Karsai, G. Generative Programming for Embedded Systems. In 1st
ACM SIGPLAN/SIGSOFT conference on Generative Programming and Component
Engineering, 2002.

[138] Szyperski, C. Component Software - Beyond Object-Oriented Programming. 2nd ed.
Addison-Wesley, 2002.

[139] Takeo, N. Supporting Architecture-centric Software Development Through Code
Generation. Thesis. Information and Computer Science, University of California, Irvine,
2009. http://tps.ics.uci.edu/svn/projects/archstudio4/branches/nobu-
3.4/doc/doc/NobuTakeo_Masters_Thesis_2009.pdf.

[140] Tarr, P., Ossher, H., et al. N Degrees of Separation: Multi-dimensional Separation of
Concerns. In Proceedings of the 21st International Conference on Software Engineering
(ICSE ’99). p. 107-119, Los Angeles, California, United States, May 16-22, 1999.

[141] Taylor, R. and van der Hoek, A. Software Design and Architecture: The Once and Future
Focus of Software Engineering In Future of Software Engineering 2007, Briand, L.C. and
Wolf, A.L. eds. p. 226-243, IEEE-CS Press, 2007.

[142] Taylor, R.N., Medvidovic, N., et al. A component- and message-based architectural style
for GUI software. IEEE Transactions on Software Engineering. 22(6), p. 390-406, 1996.

[143] Taylor, R.N., Medvidovic, N., et al. Software Architecture: Foundations, Theory, and
Practice. 736 pgs., John Wiley & Sons, 2010.

[144] Teitelman, W. and Masinter, L. The Interlisp Programming Environment. Computer.
14(4), p. 25-34, April, 1981.

[145] Thomas, I. and Nejmeh, B.A. Definitions of Tool Integration for Environments. IEEE
Software. 9(2), p. 29-35, March, 1992.

[146] Tracz, W. DSSA (Domain-Specific Software Architecture): Pedagogical Example. ACM
SIGSOFT Software Engineering Notes. 20(3), July, 1995.

[147] Trujillo, S., Batory, D., et al. Feature Oriented Model Driven Development: A Case
Study for Portlets. In Proceedings of the 29th international conference on Software
EngineeringIEEE Computer Society, 2007.

[148] Ubayashi, N., Nomura, J., et al. Archface: a contract place where architectural design and
code meet together. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1. p. 75-84, ACM: Cape Town, South Africa, 2010.

[149] van Ommering, R. Building Product Populations with Software Components. In
Proceedings of the 24th International Conference on Software Engineering (ICSE 2002).
p. 255-265, Orlando, Florida, May 19-25, 2002.

www.manaraa.com

181

[150] van Vliet, H. Software Engineering: Principles and Practice. Second ed. 726 pgs., John
Wiley & Sons, LTD, 2000.

[151] W3C. Extensible Markup Language (XML). http://www.w3.org/XML/.
[152] W3C. XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20/, W3C, 2005.
[153] Yan, H., Garlan, D., et al. DiscoTect: A System for Discovering Architectures from

Running Systems. In Proceedings of the International Conference on Software
Engineering. Edinburgh, Scotland, May, 2004.

[154] Zhang, J. and Cheng, B.H.C. Model-based development of dynamically adaptive
software. In Proceedings of the 28th international conference on Software engineering. p.
371-380, ACM: Shanghai, China, 2006.

[155] Zheng, Y. and Taylor, R.N. Taming Changes With 1.x-Way Architecture-Implementation
Mapping. In 26th IEEE/ACM International Conference On Automated Software
Engineering. p. 396 - 399: Lawrence, Kansas, 2011.

[156] Zheng, Y. and Taylor, R.N. A Rationalization of Confusion, Challenges, and Techniques
in Model-Based Software Development. Institute for Software Research, UC Irvine,
Report, 2011.

